Blog
About

25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Creative Activities in Music – A Genome-Wide Linkage Analysis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose a common genetic background for music-related creative behaviour and musical abilities at chromosome 4.

          Related collections

          Most cited references 76

          • Record: found
          • Abstract: found
          • Article: not found

          PLINK: a tool set for whole-genome association and population-based linkage analyses.

          Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biological Insights From 108 Schizophrenia-Associated Genetic Loci

            Summary Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here, we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain providing biological plausibility for the findings. Many findings have the potential to provide entirely novel insights into aetiology, but associations at DRD2 and multiple genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that play important roles in immunity, providing support for the hypothesized link between the immune system and schizophrenia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A gene atlas of the mouse and human protein-encoding transcriptomes.

              The tissue-specific pattern of mRNA expression can indicate important clues about gene function. High-density oligonucleotide arrays offer the opportunity to examine patterns of gene expression on a genome scale. Toward this end, we have designed custom arrays that interrogate the expression of the vast majority of protein-encoding human and mouse genes and have used them to profile a panel of 79 human and 61 mouse tissues. The resulting data set provides the expression patterns for thousands of predicted genes, as well as known and poorly characterized genes, from mice and humans. We have explored this data set for global trends in gene expression, evaluated commonly used lines of evidence in gene prediction methodologies, and investigated patterns indicative of chromosomal organization of transcription. We describe hundreds of regions of correlated transcription and show that some are subject to both tissue and parental allele-specific expression, suggesting a link between spatial expression and imprinting.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                24 February 2016
                2016
                : 11
                : 2
                Affiliations
                [1 ]Department of Medical Genetics, University of Helsinki, Helsinki, Finland
                [2 ]Sibelius Academy, University of the Arts Helsinki, Helsinki, Finland
                [3 ]Conservatory of Joensuu, Joensuu, Finland
                [4 ]Department of Biosciences, University of Helsinki, Helsinki, Finland
                University of Georgia, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JO PP IJ TK. Performed the experiments: LUV. Analyzed the data: JO LUV PP. Contributed reagents/materials/analysis tools: JO PP PR LUV KK PO IJ. Wrote the paper: JO PP IJ TK LUV. Designed the questionnaire: PP TK PR.

                [¤]

                Current address: Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland

                Article
                PONE-D-15-39909
                10.1371/journal.pone.0148679
                4766096
                26909693
                © 2016 Oikkonen et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Page count
                Figures: 4, Tables: 4, Pages: 21
                Product
                Funding
                This work was supported by the Academy of Finland (137713) and the Finnish Cultural Foundation to IJ. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Neuroscience
                Cognitive Science
                Cognitive Psychology
                Creativity
                Biology and Life Sciences
                Psychology
                Cognitive Psychology
                Creativity
                Social Sciences
                Psychology
                Cognitive Psychology
                Creativity
                Physical Sciences
                Physics
                Acoustics
                Bioacoustics
                Biology and Life Sciences
                Bioacoustics
                Biology and Life Sciences
                Neuroscience
                Cognitive Science
                Cognitive Psychology
                Music Cognition
                Biology and Life Sciences
                Psychology
                Cognitive Psychology
                Music Cognition
                Social Sciences
                Psychology
                Cognitive Psychology
                Music Cognition
                Biology and Life Sciences
                Genetics
                Heredity
                Linkage Disequilibrium
                Biology and Life Sciences
                Neuroscience
                Cognitive Science
                Cognitive Psychology
                Music Cognition
                Music Perception
                Biology and Life Sciences
                Psychology
                Cognitive Psychology
                Music Cognition
                Music Perception
                Social Sciences
                Psychology
                Cognitive Psychology
                Music Cognition
                Music Perception
                Biology and Life Sciences
                Neuroscience
                Sensory Perception
                Music Perception
                Biology and Life Sciences
                Psychology
                Sensory Perception
                Music Perception
                Social Sciences
                Psychology
                Sensory Perception
                Music Perception
                Biology and Life Sciences
                Genetics
                Heredity
                Genetic Mapping
                Linkage Analysis
                Biology and Life Sciences
                Genetics
                Genetic Loci
                Biology and Life Sciences
                Cell Biology
                Cell Adhesion
                Cadherins
                Custom metadata
                Genotype data are not publically available for privacy reasons. Interested researchers who meet the criteria for access to the data can contact: Irma Järvelä ( irma.jarvela@ 123456helsinki.fi ).

                Uncategorized

                Comments

                Comment on this article