22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intranasal vaccination with messenger RNA as a new approach in gene therapy: Use against tuberculosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          mRNAs are highly versatile, non-toxic molecules that are easy to produce and store, which can allow transient protein expression in all cell types. The safety aspects of mRNA-based treatments in gene therapy make this molecule one of the most promising active components of therapeutic or prophylactic methods. The use of mRNA as strategy for the stimulation of the immune system has been used mainly in current strategies for the cancer treatment but until now no one tested this molecule as vaccine for infectious disease.

          Results

          We produce messenger RNA of Hsp65 protein from Mycobacterium leprae and show that vaccination of mice with a single dose of 10 μg of naked mRNA-Hsp65 through intranasal route was able to induce protection against subsequent challenge with virulent strain of Mycobacterium tuberculosis. Moreover it was shown that this immunization was associated with specific production of IL-10 and TNF-alpha in spleen. In order to determine if antigen presenting cells (APCs) present in the lung are capable of capture the mRNA, labeled mRNA-Hsp65 was administered by intranasal route and lung APCs were analyzed by flow cytometry. These experiments showed that after 30 minutes until 8 hours the populations of CD11c +, CD11b + and CD19 + cells were able to capture the mRNA. We also demonstrated in vitro that mRNA-Hsp65 leads nitric oxide (NO) production through Toll-like receptor 7 (TLR7).

          Conclusions

          Taken together, our results showed a novel and efficient strategy to control experimental tuberculosis, besides opening novel perspectives for the use of mRNA in vaccines against infectious diseases and clarifying the mechanisms involved in the disease protection we noticed as well.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Mfold web server for nucleic acid folding and hybridization prediction.

          M Zuker (2003)
          The abbreviated name, 'mfold web server', describes a number of closely related software applications available on the World Wide Web (WWW) for the prediction of the secondary structure of single stranded nucleic acids. The objective of this web server is to provide easy access to RNA and DNA folding and hybridization software to the scientific community at large. By making use of universally available web GUIs (Graphical User Interfaces), the server circumvents the problem of portability of this software. Detailed output, in the form of structure plots with or without reliability information, single strand frequency plots and 'energy dot plots', are available for the folding of single sequences. A variety of 'bulk' servers give less information, but in a shorter time and for up to hundreds of sequences at once. The portal for the mfold web server is http://www.bioinfo.rpi.edu/applications/mfold. This URL will be referred to as 'MFOLDROOT'.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Disseminated tuberculosis in interferon gamma gene-disrupted mice

            The expression of protective immunity to Mycobacterium tuberculosis in mice is mediated by T lymphocytes that secrete cytokines. These molecules then mediate a variety of roles, including the activation of parasitized host macrophages, and the recruitment of other mononuclear phagocytes to the site of the infection in order to initiate granuloma formation. Among these cytokines, interferon gamma (IFN-gamma) is believed to play a key role is these events. In confirmation of this hypothesis, we show in this study that mice in which the IFN-gamma gene has been disrupted were unable to contain or control a normally sublethal dose of M. tuberculosis, delivered either intravenously or aerogenically. In such mice, a progressive and widespread tissue destruction and necrosis, associated with very high numbers of acid- fast bacilli, was observed. In contrast, despite the lack of protective immunity, some DTH-like reactivity could still be elicited. These data, therefore, indicate that although IFN-gamma may not be needed for DTH expression, it plays a pivotal and essential role in protective cellular immunity to tuberculosis infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA vaccines: ready for prime time?

              Since the discovery, over a decade and a half ago, that genetically engineered DNA can be delivered in vaccine form and elicit an immune response, there has been much progress in understanding the basic biology of this platform. A large amount of data has been generated in preclinical model systems, and more sustained cellular responses and more consistent antibody responses are being observed in the clinic. Four DNA vaccine products have recently been approved, all in the area of veterinary medicine. These results suggest a productive future for this technology as more optimized constructs, better trial designs and improved platforms are being brought into the clinic.
                Bookmark

                Author and article information

                Journal
                BMC Biotechnol
                BMC Biotechnology
                BioMed Central
                1472-6750
                2010
                20 October 2010
                : 10
                : 77
                Affiliations
                [1 ]Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
                [2 ]Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Belo Horizonte, Minas Gerais, Brazil
                Article
                1472-6750-10-77
                10.1186/1472-6750-10-77
                2972232
                20961459
                7f348ff1-3cca-4264-8d6a-e79baec847d2
                Copyright ©2010 Lorenzi et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 December 2009
                : 20 October 2010
                Categories
                Research Article

                Biotechnology
                Biotechnology

                Comments

                Comment on this article