12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of 5-HT 1A Receptor Stimulation in the Medial Prefrontal Cortex in the Sustained Antidepressant Effects of Ketamine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We previously reported that serotonergic transmission plays an important role in antidepressant effects of ketamine. However, detailed mechanisms have not been elucidated. Among the serotonin receptor subtypes, the serotonin 1A receptor in the medial prefrontal cortex has an important role in depression. Here, we investigated the role of the medial prefrontal cortex serotonin 1A receptor and its signaling mechanism in the antidepressant effects of ketamine.

          Methods

          The role of serotonin 1A receptor-mediated signaling mechanism (phosphoinositide-3 kinase/Akt) in the medial prefrontal cortex was examined in the mouse forced swimming test and western blotting.

          Results

          Ketamine exerted antidepressant effects that lasted for 24 hours, and the sustained antidepressant effects were attenuated by intra-medial prefrontal cortex injection of a serotonin 1A receptor antagonist, WAY100635. The sustained antidepressant effects were mimicked by intra- medial prefrontal cortex, but not systemic, administration of a serotonin 1A receptor agonist, (±)-8-hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT). The sustained antidepressant effects of ketamine and 8-OH-DPAT were abrogated by intra- medial prefrontal cortex injection of a phosphoinositide-3 kinase inhibitor. Ketamine increased the phosphorylation of Akt in the medial prefrontal cortex at 60 minutes after administration, which was blocked by a serotonin 1A receptor antagonist and a phosphoinositide-3 kinase inhibitor. Furthermore, the sustained antidepressant effects of ketamine and 8-OH-DPAT were attenuated by pretreatment of intra-medial prefrontal cortex injection of a mechanistic target of rapamycin complex-1 inhibitor.

          Conclusions

          These results indicate that selective stimulation of the medial prefrontal cortex serotonin 1A receptor and subsequent activation of the phosphoinositide-3 kinase/Akt/mechanistic target of rapamycin complex-1 pathway may be necessary for ketamine to exert the sustained antidepressant effects, and that this mechanism could be targeted to develop a novel and effective approach for treating depression.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Depression: a new animal model sensitive to antidepressant treatments.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants.

            Depression is a common, devastating illness. Current pharmacotherapies help many patients, but high rates of a partial response or no response, and the delayed onset of the effects of antidepressant therapies, leave many patients inadequately treated. However, new insights into the neurobiology of stress and human mood disorders have shed light on mechanisms underlying the vulnerability of individuals to depression and have pointed to novel antidepressants. Environmental events and other risk factors contribute to depression through converging molecular and cellular mechanisms that disrupt neuronal function and morphology, resulting in dysfunction of the circuitry that is essential for mood regulation and cognitive function. Although current antidepressants, such as serotonin-reuptake inhibitors, produce subtle changes that take effect in weeks or months, it has recently been shown that treatment with new agents results in an improvement in mood ratings within hours of dosing patients who are resistant to typical antidepressants. Within a similar time scale, these new agents have also been shown to reverse the synaptic deficits caused by stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report.

              This report describes the participants and compares the acute and longer-term treatment outcomes associated with each of four successive steps in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial. A broadly representative adult outpatient sample with nonpsychotic major depressive disorder received one (N=3,671) to four (N=123) successive acute treatment steps. Those not achieving remission with or unable to tolerate a treatment step were encouraged to move to the next step. Those with an acceptable benefit, preferably symptom remission, from any particular step could enter a 12-month naturalistic follow-up phase. A score of or=11 (HRSD(17)>or=14) defined relapse. The QIDS-SR(16) remission rates were 36.8%, 30.6%, 13.7%, and 13.0% for the first, second, third, and fourth acute treatment steps, respectively. The overall cumulative remission rate was 67%. Overall, those who required more treatment steps had higher relapse rates during the naturalistic follow-up phase. In addition, lower relapse rates were found among participants who were in remission at follow-up entry than for those who were not after the first three treatment steps. When more treatment steps are required, lower acute remission rates (especially in the third and fourth treatment steps) and higher relapse rates during the follow-up phase are to be expected. Studies to identify the best multistep treatment sequences for individual patients and the development of more broadly effective treatments are needed.
                Bookmark

                Author and article information

                Journal
                Int J Neuropsychopharmacol
                Int. J. Neuropsychopharmacol
                ijnp
                International Journal of Neuropsychopharmacology
                Oxford University Press (US )
                1461-1457
                1469-5111
                April 2018
                22 December 2017
                22 December 2017
                : 21
                : 4
                : 371-381
                Affiliations
                Research Headquarters, Taisho Pharmaceutical Co., Ltd., Japan
                Author notes
                Correspondence: Shigeyuki Chaki, PhD, Research Headquarters, Taisho Pharmaceutical Co., Ltd., 1–403 Yoshino-cho, Kita-ku, Saitama, Saitama 331–9530, Japan ( s-chaki@ 123456taisho.co.jp ).
                Article
                pyx116
                10.1093/ijnp/pyx116
                5888010
                29309585
                7f404f3d-1ddb-45c6-aad4-2e1f8dc691b1
                © The Author(s) 2017. Published by Oxford University Press on behalf of CINP.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals. permissions@oup.com

                History
                : 13 September 2017
                : 21 December 2017
                : 30 November 2017
                Page count
                Pages: 11
                Categories
                Regular Research Articles

                Pharmacology & Pharmaceutical medicine
                ketamine,5-ht1a receptor,antidepressant,phosphoinositide-3 kinase,akt

                Comments

                Comment on this article