Signals of local adaptation have been found in many plants and animals, highlighting the heterogeneity in the distribution of adaptive genetic variation throughout species ranges. In the coming decades, global climate change is expected to induce shifts in the selective pressures that shape this adaptive variation. These changes in selective pressures will likely result in varying degrees of local climate maladaptation and spatial reshuffling of the underlying distributions of adaptive alleles. There is a growing interest in using population genomic data to help predict future disruptions to locally adaptive gene-environment associations. One motivation behind such work is to better understand how the effects of changing climate on populations’ short-term fitness could vary spatially across species ranges. Here we review the current use of genomic data to predict the disruption of local adaptation across current and future climates. After assessing goals and motivationsunderlying the approach, we review the main steps and associated statistical methods currently in use and explore our current understanding of the limits and future potential of using genomics to predict climate change (mal)adaptation.