27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phylogeography and Population Genetic Structure of the Ornate Dragon Lizard, Ctenophorus ornatus

      research-article
      * , , ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Species inhabiting ancient, geologically stable landscapes that have been impacted by agriculture and urbanisation are expected to have complex patterns of genetic subdivision due to the influence of both historical and contemporary gene flow. Here, we investigate genetic differences among populations of the granite outcrop-dwelling lizard Ctenophorus ornatus, a phenotypically variable species with a wide geographical distribution across the south-west of Western Australia. Phylogenetic analysis of mitochondrial DNA sequence data revealed two distinct evolutionary lineages that have been isolated for more than four million years within the C. ornatus complex. This evolutionary split is associated with a change in dorsal colouration of the lizards from deep brown or black to reddish-pink. In addition, analysis of microsatellite data revealed high levels of genetic structuring within each lineage, as well as strong isolation by distance at multiple spatial scales. Among the 50 outcrop populations’ analysed, non-hierarchical Bayesian clustering analysis revealed the presence of 23 distinct genetic groups, with outcrop populations less than 4 km apart usually forming a single genetic group. When a hierarchical analysis was carried out, almost every outcrop was assigned to a different genetic group. Our results show there are multiple levels of genetic structuring in C. ornatus, reflecting the influence of both historical and contemporary evolutionary processes. They also highlight the need to recognise the presence of two evolutionarily distinct lineages when making conservation management decisions on this species.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae).

          Polymerase chain reaction (PCR) products corresponding to 803 bp of the cytochrome oxidase subunits I and II region of mitochondrial DNA (mtDNA COI-II) were deduced to consist of multiple haplotypes in three Sitobion species. We investigated the molecular basis of these observations. PCR products were cloned, and six clones from one individual per species were sequenced. In each individual, one sequence was found commonly, but also two or three divergent sequences were seen. The divergent sequences were shown to be nonmitochondrial by sequencing from purified mtDNA and Southern blotting experiments. All seven nonmitochondrial clones sequenced to completion were unique. Nonmitochondrial sequences have a high proportion of unique sites, and very few characters are shared between nonmitochondrial clones to the exclusion of mtDNA. From these data, we infer that fragments of mtDNA have been transposed separately (probably into aphid chromosomes), at a frequency only known to be equalled in humans. The transposition phenomenon appears to occur infrequently or not at all in closely related genera and other aphids investigated. Patterns of nucleotide substitution in mtDNA inferred over a parsimony tree are very different from those in transposed sequences. Compared with mtDNA, nonmitochondrial sequences have less codon position bias, more even exchanges between A, G, C and T, and a higher proportion of nonsynonymous replacements. Although these data are consistent with the transposed sequences being under less constraint than mtDNA, changes in the nonmitochondrial sequences are not random: there remains significant position bias, and probable excesses of synonymous replacements and of conservative inferred amino acid replacements. We conclude that a proportion of the inferred change in the nonmitochondrial sequences occurred before transposition. We believe that Sitobion aphids (and other species exhibiting mtDNA transposition) may be important for studying the molecular evolution of mtDNA and pseudogenes. However, our data highlight the need to establish the true evolutionary relationships between sequences in comparative investigations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human population in the biodiversity hotspots.

            Biologists have identified 25 areas, called biodiversity hotspots, that are especially rich in endemic species and particularly threatened by human activities. The human population dynamics of these areas, however, are not well quantified. Here we report estimates of key demographic variables for each hotspot, and for three extensive tropical forest areas that are less immediately threatened. We estimate that in 1995 more than 1.1 billion people, nearly 20% of world population, were living within the hotspots, an area covering about 12% of Earth's terrestrial surface. We estimate that the population growth rate in the hotspots (1995-2000) is 1.8% yr(-1), substantially higher than the population growth rate of the world as a whole (1.3% yr(-1)) and above that of the developing countries (1.6% yr(-1)). These results suggest that substantial human-induced environmental changes are likely to continue in the hotspots and that demographic change remains an important factor in global biodiversity conservation. The results also underline the potential conservation significance of the continuing worldwide declines in human fertility and of policies and programs that influence human migration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              On the failure of modern species concepts.

              Jody Hey (2006)
              The modern age of species concepts began in 1942, when Ernst Mayr gave concept names to several different approaches to species identification. A long list of species concepts then followed, as well as a complex literature on their merits, motivations and uses. Some of these complexities arose as a consequence of the semantic shift that Mayr introduced, in which procedures for identifying species were elevated to concepts. Much of the debate in recent decades over concepts, and over pluralism versus monism, can be seen as an unnecessary consequence of treating species identification criteria as if they were more fundamental concepts. Recently, biologists have begun to recognize both the shortcomings of a lexicon of multiple species concepts and a common evolutionary idea that underlies them.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                1 October 2012
                : 7
                : 10
                : e46351
                Affiliations
                [1]Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Perth, Western Australia
                Biodiversity Insitute of Ontario - University of Guelph, Canada
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: EL WJK NRL JLT. Performed the experiments: EL. Analyzed the data: EL WJK JLT. Contributed reagents/materials/analysis tools: EL NRL JLT. Wrote the paper: EL. Proofread and provided feedback and discussion on manuscript: JLT NRL WJK Field sample and data collection: EL NRL JLT.

                Article
                PONE-D-12-06018
                10.1371/journal.pone.0046351
                3462208
                23049697
                7f559bd2-9d65-4455-82c3-1d54faa87021
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 February 2012
                : 31 August 2012
                Page count
                Pages: 11
                Funding
                This research was supported by the Holsworth Wildlife Research Endowment and the School of Animal Biology at the University of Western Australia. EL was funded by an Australian Postgraduate Award. NRL and JLT were funded by Australian Research Council Fellowships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Population Genetics
                Gene Flow
                Ecology
                Biodiversity
                Evolutionary Biology
                Population Genetics
                Gene Flow
                Haplotypes
                Evolutionary Genetics
                Genetics
                Heredity
                Gene Flow
                Population Genetics
                Gene Flow
                Population Biology
                Population Genetics
                Gene Flow
                Zoology
                Animal Phylogenetics
                Herpetology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article