12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hepatic androgen receptor suppresses hepatocellular carcinoma metastasis through modulation of cell migration and anoikis.

      Hepatology (Baltimore, Md.)
      Animals, Anoikis, drug effects, genetics, Benzenesulfonates, pharmacology, Carcinoma, Hepatocellular, drug therapy, metabolism, secondary, Cell Movement, physiology, Cell Proliferation, Disease Models, Animal, Disease Progression, Female, Humans, Immunohistochemistry, Liver, Liver Neoplasms, pathology, Liver Neoplasms, Experimental, Lung Neoplasms, Male, Mice, Mice, Knockout, Mice, Nude, NF-kappa B, Niacinamide, analogs & derivatives, Phenylurea Compounds, Phosphorylation, Pyridines, Random Allocation, Receptors, Androgen, Tumor Cells, Cultured

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Early reports suggested androgen/androgen receptor (AR) signals promote hepatocarcinogenesis. However, all antiandrogen clinical trials failed in advanced hepatocellular carcinoma (HCC) without reasonable explanations. We examined AR functions in HCC cancer metastasis in this study. We examined hepatic AR roles in HCC metastasis by comparing liver hepatocyte AR knockout and wildtype in a carcinogen-induced HCC mouse model. We examined tumor histology, cancer metastatic risks, and cancer survival in vivo, as well as cell anoikis and migration using primary hepatic tumor culture in vitro. We also examined therapeutic potentials of AR expression combined with the molecular targeting agent sorafenib in an HCC metastasis mouse model. We found a novel cancer phenotype in which mice lacking hepatic AR developed more undifferentiated tumors and larger tumor size at the metastatic stage. These mice also died earlier with increased lung metastasis, suggesting that hepatic AR may play dual yet opposite roles to promote HCC initiation but suppress HCC metastasis. Mechanistic dissection found that hepatic AR could enhance anoikis and suppress migration of HCC cells by way of suppression of p38 phosphorylation/activation and the nuclear factor kappa B (NF-κB)/matrix metallopeptidase 9 (MMP9) pathway, respectively. In addition, the in vivo preclinical trials concluded that a combination therapy of increased AR expression and reduced multiple-kinase inhibitor (sorafenib) exhibited better therapeutic efficacy. Our study demonstrates that AR could orchestrate intrahepatic signaling hierarchies and cellular behaviors, consequently affect HCC progression. Results from combination therapy shed light on developing new therapeutic paradigms for battling HCC at later metastatic stages. Copyright © 2012 American Association for the Study of Liver Diseases.

          Related collections

          Author and article information

          Comments

          Comment on this article