93
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A selective role for dopamine in reward learning

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Individuals make choices and prioritize goals using complex processes that assign value to rewards and associated stimuli. During Pavlovian learning, previously neutral stimuli that predict rewards can acquire motivational properties, whereby they themselves become attractive and desirable incentive stimuli. But individuals differ in whether a cue acts solely as a predictor that evokes a conditional response, or also serves as an incentive stimulus, and this determines the degree to which a cue might bias choice or even promote maladaptive behavior. Here we use rats that differ in the incentive motivational properties they attribute to food cues to probe the role of the neurotransmitter dopamine in stimulus-reward learning. We show that intact dopamine transmission is not required for all forms of learning in which reward cues become effective predictors. Rather, dopamine acts selectively in a form of reward learning in which “incentive salience” is assigned to reward cues. In individuals with a propensity for this form of learning, reward cues come to powerfully motivate and control behavior. This work provides insight into the neurobiology of a form of reward learning that confers increased susceptibility to disorders of impulse control.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The neural basis of drug craving: an incentive-sensitization theory of addiction.

          This paper presents a biopsychological theory of drug addiction, the 'Incentive-Sensitization Theory'. The theory addresses three fundamental questions. The first is: why do addicts crave drugs? That is, what is the psychological and neurobiological basis of drug craving? The second is: why does drug craving persist even after long periods of abstinence? The third is whether 'wanting' drugs (drug craving) is attributable to 'liking' drugs (to the subjective pleasurable effects of drugs)? The theory posits the following. (1) Addictive drugs share the ability to enhance mesotelencephalic dopamine neurotransmission. (2) One psychological function of this neural system is to attribute 'incentive salience' to the perception and mental representation of events associated with activation of the system. Incentive salience is a psychological process that transforms the perception of stimuli, imbuing them with salience, making them attractive, 'wanted', incentive stimuli. (3) In some individuals the repeated use of addictive drugs produces incremental neuroadaptations in this neural system, rendering it increasingly and perhaps permanently, hypersensitive ('sensitized') to drugs and drug-associated stimuli. The sensitization of dopamine systems is gated by associative learning, which causes excessive incentive salience to be attributed to the act of drug taking and to stimuli associated with drug taking. It is specifically the sensitization of incentive salience, therefore, that transforms ordinary 'wanting' into excessive drug craving. (4) It is further proposed that sensitization of the neural systems responsible for incentive salience ('for wanting') can occur independently of changes in neural systems that mediate the subjective pleasurable effects of drugs (drug 'liking') and of neural systems that mediate withdrawal. Thus, sensitization of incentive salience can produce addictive behavior (compulsive drug seeking and drug taking) even if the expectation of drug pleasure or the aversive properties of withdrawal are diminished and even in the face of strong disincentives, including the loss of reputation, job, home and family. We review evidence for this view of addiction and discuss its implications for understanding the psychology and neurobiology of addiction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The debate over dopamine's role in reward: the case for incentive salience.

            Debate continues over the precise causal contribution made by mesolimbic dopamine systems to reward. There are three competing explanatory categories: 'liking', learning, and 'wanting'. Does dopamine mostly mediate the hedonic impact of reward ('liking')? Does it instead mediate learned predictions of future reward, prediction error teaching signals and stamp in associative links (learning)? Or does dopamine motivate the pursuit of rewards by attributing incentive salience to reward-related stimuli ('wanting')? Each hypothesis is evaluated here, and it is suggested that the incentive salience or 'wanting' hypothesis of dopamine function may be consistent with more evidence than either learning or 'liking'. In brief, recent evidence indicates that dopamine is neither necessary nor sufficient to mediate changes in hedonic 'liking' for sensory pleasures. Other recent evidence indicates that dopamine is not needed for new learning, and not sufficient to directly mediate learning by causing teaching or prediction signals. By contrast, growing evidence indicates that dopamine does contribute causally to incentive salience. Dopamine appears necessary for normal 'wanting', and dopamine activation can be sufficient to enhance cue-triggered incentive salience. Drugs of abuse that promote dopamine signals short circuit and sensitize dynamic mesolimbic mechanisms that evolved to attribute incentive salience to rewards. Such drugs interact with incentive salience integrations of Pavlovian associative information with physiological state signals. That interaction sets the stage to cause compulsive 'wanting' in addiction, but also provides opportunities for experiments to disentangle 'wanting', 'liking', and learning hypotheses. Results from studies that exploited those opportunities are described here. In short, dopamine's contribution appears to be chiefly to cause 'wanting' for hedonic rewards, more than 'liking' or learning for those rewards.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A framework for mesencephalic dopamine systems based on predictive Hebbian learning.

              We develop a theoretical framework that shows how mesencephalic dopamine systems could distribute to their targets a signal that represents information about future expectations. In particular, we show how activity in the cerebral cortex can make predictions about future receipt of reward and how fluctuations in the activity levels of neurons in diffuse dopamine systems above and below baseline levels would represent errors in these predictions that are delivered to cortical and subcortical targets. We present a model for how such errors could be constructed in a real brain that is consistent with physiological results for a subset of dopaminergic neurons located in the ventral tegmental area and surrounding dopaminergic neurons. The theory also makes testable predictions about human choice behavior on a simple decision-making task. Furthermore, we show that, through a simple influence on synaptic plasticity, fluctuations in dopamine release can act to change the predictions in an appropriate manner.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                0028-0836
                1476-4687
                20 October 2010
                8 December 2010
                6 January 2011
                6 July 2011
                : 469
                : 7328
                : 53-57
                Affiliations
                [1 ] Molecular and Behavioral Neuroscience Institute, University of Michigan
                [2 ] Department of Psychiatry and Behavioral Sciences and Department of Pharmacology, University of Washington
                [3 ] Department of Psychology, University of Michigan
                Author notes
                [* ]To whom correspondence should be addressed., sflagel@ 123456umich.edu (S.B.F.); jjc1@ 123456uw.edu (J.J.C.)
                [†]

                These authors contributed equally to this manuscript.

                Article
                nihpa245936
                10.1038/nature09588
                3058375
                21150898
                7f80c633-a188-42fe-b0e0-11cc10e01653

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of Mental Health : NIMH
                Funded by: National Institute on Drug Abuse : NIDA
                Award ID: R00 MH085859-02 ||MH
                Funded by: National Institute of Mental Health : NIMH
                Funded by: National Institute on Drug Abuse : NIDA
                Award ID: P01 DA021633-02 ||DA
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article