5
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A study of the microbiology of the intestinal tract in different species of Teleost fish from the Black Sea

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper presents a study on the microbial status of different fish species and their habitats in the Bulgarian Black Sea area. The samples were collected in the period of January 2021 until March 2021. The fish species we used in this study were Black Sea turbot (Scophthalmus maximus), round goby (Neogobius melanostomus), shore rockling (Gaidropsarus mediterraneus) and European anchovy (Engraulis encrasicolus). The BIOLOG system was used for microbiological determination. From the different fish species, different species of microorganisms were isolated (using selective nutrient media). From the torbut, we isolated species Enterococcus villorum with 24 × 103 cells in 1 ml, Moraxella nonliquefaciens with 70 × 103 cells in 1 ml and Pseudomonas synxantha with 123 × 103 cells. Pseudomonas putida was isolated from the round goby with 20 × 103 cells in 1 ml. The species Streptococcus entericus with 123 × 103 cells in 1 ml was isolated from the shore rockling. Pseudomonas fulva with 60 × 103 cells in 1 ml was isolated from the European anchovy. A total of 223 × 103 cells in 1 ml of Pseudomonas agarici were isolated from Trachinus draco. Pseudomonas tolaasii with 145 × 103 cells in 1 ml were isolated from Merlangius merlangus. A different species of bacteria of the genus Pseudomonas was found for each of the investigated species of Black Sea fish. Apparently, the species Pseudomonas is characteristic of marine Teleostei and is important for the life and metabolism of these vertebrates. These microorganisms probably are resident species and developed not as result of pollution or environmental change.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Antibacterial resistance worldwide: causes, challenges and responses.

          The optimism of the early period of antimicrobial discovery has been tempered by the emergence of bacterial strains with resistance to these therapeutics. Today, clinically important bacteria are characterized not only by single drug resistance but also by multiple antibiotic resistance--the legacy of past decades of antimicrobial use and misuse. Drug resistance presents an ever-increasing global public health threat that involves all major microbial pathogens and antimicrobial drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibiotics and antibiotic resistance in water environments.

            Antibiotic-resistant organisms enter into water environments from human and animal sources. These bacteria are able to spread their genes into water-indigenous microbes, which also contain resistance genes. On the contrary, many antibiotics from industrial origin circulate in water environments, potentially altering microbial ecosystems. Risk assessment protocols for antibiotics and resistant bacteria in water, based on better systems for antibiotics detection and antibiotic-resistance microbial source tracking, are starting to be discussed. Methods to reduce resistant bacterial load in wastewaters, and the amount of antimicrobial agents, in most cases originated in hospitals and farms, include optimization of disinfection procedures and management of wastewater and manure. A policy for preventing mixing human-originated and animal-originated bacteria with environmental organisms seems advisable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Composition, Diversity, and Origin of the Bacterial Community in Grass Carp Intestine

              Gut microbiota has become an integral component of the host, and received increasing attention. However, for many domestic animals, information on the microbiota is insufficient and more effort should be exerted to manage the gastrointestinal bacterial community. Understanding the factors that influence the composition of microbial community in the host alimentary canal is essential to manage or improve the microbial community composition. In the present study, 16S rRNA gene sequence-based comparisons of the bacterial communities in the grass carp (Ctenopharyngodon idellus) intestinal contents and fish culture-associated environments are performed. The results show that the fish intestinal microbiota harbors many cellulose-decomposing bacteria, including sequences related to Anoxybacillus, Leuconostoc, Clostridium, Actinomyces, and Citrobacter. The most abundant bacterial operational taxonomic units (OTUs) in the grass carp intestinal content are those related to feed digestion. In addition, the potential pathogens and probiotics are important members of the intestinal microbiota. Further analyses show that grass carp intestine holds a core microbiota composed of Proteobacteria, Firmicutes, and Actinobacteria. The comparison analyses reveal that the bacterial community in the intestinal contents is most similar to those from the culture water and sediment. However, feed also plays significant influence on the composition of gut microbiota.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                BioRisk
                BR
                Pensoft Publishers
                1313-2652
                1313-2644
                August 04 2022
                August 04 2022
                : 18
                : 105-113
                Article
                10.3897/biorisk.18.80357
                7f89f25c-362e-4853-a660-6c3a52d55221
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article