46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ascorbic acid metabolism and functions: A comparison of plants and mammals

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ascorbic acid is synthesised by eukaryotes, the known exceptions being primates and some other animal groups which have lost functional gulonolactone oxidase. Prokaryotes do not synthesise ascorbate and do not need an ascorbate supply, so the functions that are essential for mammals and plants are not required or are substituted by other compounds. The ability of ascorbate to donate electrons enables it to act as a free radical scavenger and to reduce higher oxidation states of iron to Fe 2+. These reactions are the basis of its biological activity along with the relative stability of the resulting resonance stabilised monodehydroascorbate radical. The importance of these properties is emphasised by the evolution of at least three biosynthetic pathways and production of an ascorbate analogue, erythroascorbate, by fungi. The iron reducing activity of ascorbate maintains the reactive centre Fe 2+ of 2-oxoglutarate-dependent dioxygenases (2-ODDs) thus preventing inactivation. These enzymes have diverse functions and, recently, the possibility that ascorbate status in mammals could influence 2-ODDs involved in histone and DNA demethylation thereby influencing stem cell differentiation and cancer has been uncovered. Ascorbate is involved in iron uptake and transport in plants and animals. While the above biochemical functions are shared between mammals and plants, ascorbate peroxidase (APX) is an enzyme family limited to plants and photosynthetic protists. It provides these organisms with increased capacity to remove H 2O 2 produced by photosynthetic electron transport and photorespiration. The Fe reducing activity of ascorbate enables hydroxyl radical production (pro-oxidant effect) and the reactivity of dehydroascorbate (DHA) and reaction of its degradation products with proteins (dehydroascorbylation and glycation) is potentially damaging. Ascorbate status influences gene expression in plants and mammals but at present there is little evidence that it acts as a specific signalling molecule. It most likely acts indirectly by influencing the redox state of thiols and 2-ODD activity. However, the possibility that dehydroascorbylation is a regulatory post-translational protein modification could be explored.

          Graphical abstract

          Highlights

          • The function and metabolism of ascorbate is compared between plants and mammals.

          • Ascorbate readily reduces radicals and Fe/Cu.

          • Ascorbate is synthesised by plants, protists and animals via different pathways.

          • Fungi synthesise the analogue D-erythroascorbate.

          • Plants and photosynthetic protists use ascorbate peroxidase to remove H 2O 2.

          Related collections

          Most cited references185

          • Record: found
          • Abstract: found
          • Article: not found

          Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis.

          During primate evolution, a major factor in lengthening life-span and decreasing age-specific cancer rates may have been improved protective mechanisms against oxygen radicals. We propose that one of these protective systems is plasma uric acid, the level of which increased markedly during primate evolution as a consequence of a series of mutations. Uric acid is a powerful antioxidant and is a scavenger of singlet oxygen and radicals. We show that, at physiological concentrations, urate reduces the oxo-heme oxidant formed by peroxide reaction with hemoglobin, protects erythrocyte ghosts against lipid peroxidation, and protects erythrocytes from peroxidative damage leading to lysis. Urate is about as effective an antioxidant as ascorbate in these experiments. Urate is much more easily oxidized than deoxynucleosides by singlet oxygen and is destroyed by hydroxyl radicals at a comparable rate. The plasma urate levels in humans (about 300 microM) is considerably higher than the ascorbate level, making it one of the major antioxidants in humans. Previous work on urate reported in the literature supports our experiments and interpretations, although the findings were not discussed in a physiological context.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants.

            Y Sakihama (2002)
            Plant phenolic compounds such as flavonoids and lignin precursors are important constituents of the human diet. These dietary phytophenolics have been recognized largely as beneficial antioxidants that can scavenge harmful active oxygen species including O(2)(.-), H(2)O(2), .OH, and (1)O(2). Here we review our current understanding of the antioxidant and prooxidant actions of phenolics in plant cells. In plant systems, phytophenolics can act as antioxidants by donating electrons to guaiacol-type peroxidases (GuPXs) for the detoxification of H(2)O(2) produced under stress conditions. As a result of such enzymatic as well as non-enzymatic antioxidant reactions, phenoxyl radicals are formed as the primary oxidized products. Until recently, phenoxyl radicals had been difficult to detect by static electron spin resonance (ESR) because they rapidly change to non-radical products. Application of Zn exerts spin-stabilizing effects on phenoxyl radicals that enables us to analyze the formation and decay kinetics of the radicals. The ESR signals of phenoxyl radicals are eliminated by monodehydroascorbate radical (MDA) reductase, suggesting that phenoxyl radicals, like the ascorbate radical, are enzymatically recycled to parent phenolics. Thus, phenolics in plant cells can form an antioxidant system equivalent to that of ascorbate. In contrast to their antioxidant activity, phytophenolics also have the potential to act as prooxidants under certain conditions. For example, flavonoids and dihydroxycinnamic acids can nick DNA via the production of radicals in the presence of Cu and O(2). Phenoxyl radicals can also initiate lipid peroxidation. Recently, Al, Zn, Ca, Mg and Cd have been found to stimulate phenoxyl radical-induced lipid peroxidation. We discuss the mechanism of phenoxyl radical prooxidant activity in terms of lifetime prolongation by spin-stabilizing agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Catalytic metals, ascorbate and free radicals: combinations to avoid.

              Trace levels of transition metals can participate in the metal-catalyzed Haber-Weiss reaction (superoxide-driven Fenton reaction) as well as catalyze the oxidation of ascorbate. Generally ascorbate is thought of as an excellent reducing agent; it is able to serve as a donor antioxidant in free radical-mediated oxidation processes. However, as a reducing agent it is also able to reduce redox-active metals such as copper and iron, thereby increasing the pro-oxidant chemistry of these metals. Thus ascorbate can serve as both a pro-oxidant and an antioxidant. In general, at low ascorbate concentrations, ascorbate is prone to be a pro-oxidant, and at high concentrations, it will tend to be an antioxidant. Hence there is a crossover effect. We propose that the "position" of this crossover effect is a function of the catalytic metal concentration. In this presentation, we discuss: (1) the role of catalytic metals in free radical-mediated oxidations; (2) ascorbate as both a pro-oxidant and an antioxidant; (3) catalytic metal catalysis of ascorbate oxidation; (4) use of ascorbate to determine adventitious catalytic metal concentrations; (5) use of ascorbate radical as a marker of oxidative stress; and (6) use of ascorbate and iron as free radical pro-oxidants in photodynamic therapy of cancer.
                Bookmark

                Author and article information

                Contributors
                Journal
                Free Radic Biol Med
                Free Radic. Biol. Med
                Free Radical Biology & Medicine
                Elsevier Science
                0891-5849
                1873-4596
                1 July 2018
                July 2018
                : 122
                : 116-129
                Affiliations
                [0005]Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
                Article
                S0891-5849(18)30136-9
                10.1016/j.freeradbiomed.2018.03.033
                6191929
                29567393
                7f97f2e0-d315-4697-839c-75b89bb43291
                © 2018 The Author

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 November 2017
                : 15 March 2018
                : 17 March 2018
                Categories
                Article

                Molecular biology
                2-odd, 2-oxolutarate-dependent dioxygenase,apx, ascorbate peroxidase,ao, ascorbate oxidase,dha, dehydroascorbate (bicyclic),dhar, dehydroascorbate reductase,glut, dha transporter,gsh, glutathione,gssg, glutathione disulfide,mdha, monodehydroascorbate,mdhar, monodehydroascorbate reductase,sod, superoxide dismutase,svct, sodium-dependent ascorbate transporter,vde, violaxanthin de-epoxidase,ascorbic acid,vitamin c,hydrogen peroxide,ascorbate peroxidase,ascorbate oxidase,gulonolactone oxidase,galactonolactone dehydrogenase,dehydroascorbate,monodehydroascorbate,dioxygenase,iron reduction,epigenetics,vtc mutants

                Comments

                Comment on this article