4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Novel deep transfer learning model for COVID-19 patient detection using X-ray chest images

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Around the world, more than 250 countries are affected by the COVID-19 pandemic, which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This outbreak can be controlled only by the diagnosis of the COVID-19 infection in early stages. It is found that the radiographic images are ideal for the fastest diagnosis of COVID-19 infection. This paper proposes an ensemble model which detects the COVID-19 infection in the early stage with the use of chest X-ray images. The transfer learning enables to reuse the pretrained models. The ensemble learning integrates various transfer learning models, i.e., EfficientNet, GoogLeNet, and XceptionNet, to design the proposed model. These models can categorize patients as COVID-19 (+), pneumonia (+), tuberculosis (+), or healthy. The proposed model enhances the classifier’s generalization ability for both binary and multiclass COVID-19 datasets. Two popular datasets are used to evaluate the performance of the proposed ensemble model. The comparative analysis validates that the proposed model outperforms the state-of-art models in terms of various performance metrics.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Re-epithelialization and immune cell behaviour in an ex vivo human skin model

            A large body of literature is available on wound healing in humans. Nonetheless, a standardized ex vivo wound model without disruption of the dermal compartment has not been put forward with compelling justification. Here, we present a novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour. Importantly, the basement membrane remained intact after blister roof removal and keratinocytes were absent in the wounded area. Upon six days of culture, the wound was covered with one to three-cell thick K14+Ki67+ keratinocyte layers, indicating that proliferation and migration were involved in wound closure. After eight to twelve days, a multi-layered epidermis was formed expressing epidermal differentiation markers (K10, filaggrin, DSG-1, CDSN). Investigations about immune cell-specific manners revealed more T cells in the blister roof epidermis compared to normal epidermis. We identified several cell populations in blister roof epidermis and suction blister fluid that are absent in normal epidermis which correlated with their decrease in the dermis, indicating a dermal efflux upon negative pressure. Together, our model recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Randomized controlled trial of a 12-week digital care program in improving low back pain

              Low back pain (LBP) is the leading cause of disability throughout the world and is economically burdensome. The recommended first line treatment for non-specific LBP is non-invasive care. A digital care program (DCP) delivering evidence-based non-invasive treatment for LBP can aid self-management by engaging patients and scales personalized therapy for patient-specific needs. We assessed the efficacy of a 12-week DCP for LBP in a two-armed, pre-registered, randomized, controlled trial (RCT). Participants were included based on self-reported duration of LBP, but those with surgery or injury to the lower back in the previous three months were excluded. The treatment group (DCP) received the 12-week DCP, consisting of sensor-guided exercise therapy, education, cognitive behavioral therapy, team and individual behavioral coaching, activity tracking, and symptom tracking – all administered remotely via an app. The control group received three digital education articles only. All participants maintained access to treatment-as-usual. At 12 weeks, an intention-to-treat analysis showed each primary outcome—Oswestry Disability Index (p < 0.001), Korff Pain (p < 0.001) and Korff Disability (p < 0.001)—as well as each secondary outcome improved more for participants in the DCP group compared to control group. For participants who completed the DCP (per protocol), average improvement in pain outcomes ranged 52-64% (Korff: 48.8–23.4, VAS: 43.6–16.5, VAS impact on daily life: 37.3–13.4; p < 0.01 for all) and average improvement in disability outcomes ranged 31–55% (Korff: 33.1–15, ODI: 19.7–13.5; p < 0.01 for both). Surgical interest significantly reduced in the DCP group. Participants that completed the DCP had an average engagement, each week, of 90%. Future studies will further explore the effectiveness of the DCP for long-term outcomes beyond 12 weeks and for a LBP patient population with possibly greater baseline pain and disability. In conclusion, the DCP resulted in improved LBP outcomes compared to treatment-as-usual and has potential to scale personalized evidence-based non-invasive treatment for LBP patients.
                Bookmark

                Author and article information

                Contributors
                deepali.gupta@chitkara.edu.in
                Journal
                J Ambient Intell Humaniz Comput
                J Ambient Intell Humaniz Comput
                Journal of Ambient Intelligence and Humanized Computing
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1868-5137
                1868-5145
                15 May 2021
                : 1-10
                Affiliations
                [1 ]GRID grid.411685.f, ISNI 0000 0004 0498 1133, Department of Computer Science & Engineering, , Maharaja Surajmal Institute of Technology, ; C-4, Janakpuri, New Delhi, India
                [2 ]GRID grid.418403.a, ISNI 0000 0001 0733 9339, Department of Computer Science & Engineering, , Moradabad Institute of Technology, ; Moradabad, India
                [3 ]GRID grid.428245.d, ISNI 0000 0004 1765 3753, Chitkara University Institute of Engineering and Technology, , Chitkara University, ; Rajpura, Punjab India
                [4 ]GRID grid.412436.6, ISNI 0000 0004 0500 6866, Department of Computer Science and Engineering, , Thapar Institute of Engineering and Technology, ; Patiala, India
                Article
                3306
                10.1007/s12652-021-03306-6
                8123104
                34025813
                7f9f0a4e-de60-4976-9889-b55c4718b00b
                © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 11 November 2020
                : 1 May 2021
                Categories
                Original Research

                covid-19,ensemble,transfer learning,infection
                covid-19, ensemble, transfer learning, infection

                Comments

                Comment on this article