22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Small molecule receptor tyrosine kinase inhibitor of platelet-derived growth factor signaling (SU9518) modifies radiation response in fibroblasts and endothelial cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Several small receptor tyrosine kinase inhibitors (RTKI) have entered clinical cancer trials alone and in combination with radiotherapy or chemotherapy. The inhibitory spectrum of these compounds is often not restricted to a single target. For example Imatinib/Gleevec (primarily a bcr/abl kinase inhibitor) or SU11248 (mainly a VEGFR inhibitor) are also potent inhibitors of PDGFR and other kinases. We showed previously that PDGF signaling inhibition attenuates radiation-induced lung fibrosis in a mouse model. Here we investigate effects of SU9518, a PDGFR inhibitor combined with ionizing radiation in human primary fibroblasts and endothelial cells in vitro, with a view on utilizing RTKI for antifibrotic therapy.

          Methods

          Protein levels of PDGFR-α/-β and phosphorylated PDGFR in fibroblasts were analyzed using western and immunocytochemistry assays. Functional proliferation and clonogenic assays were performed (i) to assess PDGFR-mediated survival and proliferation in fibroblasts and endothelial cells after SU9518 (small molecule inhibitor of PDGF receptor tyrosine kinase); (ii) to test the potency und selectivity of the PDGF RTK inhibitor after stimulation with PDGF isoforms (-AB, -AA, -BB) and VEGF+bFGF. In order to simulate in vivo conditions and to understand the role of radiation-induced paracrine PDGF secretion, co-culture models consisting of fibroblasts and endothelial cells were employed.

          Results

          In fibroblasts, radiation markedly activated PDGF signaling as detected by enhanced PDGFR phosphorylation which was potently inhibited by SU9518. In fibroblast clonogenic assay, SU9518 reduced PDGF stimulated fibroblast survival by 57%. Likewise, SU9518 potently inhibited fibroblast and endothelial cell proliferation. In the co-culture model, radiation of endothelial cells and fibroblast cells substantially stimulated proliferation of non irradiated fibroblasts and vice versa. Importantly, the RTK inhibitor significantly inhibited this paracrine radiation-induced fibroblast and endothelial cell activation.

          Conclusion

          Radiation-induced autocrine and paracrine PDGF signaling plays an important role in fibroblast and endothelial cell proliferation. SU9518, a PDGFR tyrosine kinase inhibitor, reduces radiation-induced fibroblast and endothelial cell activation. This may explain therapeutic anticancer effects of Imatinib/Gleevec, and at the same time it could open a way of attenuating radiation-induced fibrosis.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase.

          The serine/threonine protein kinase encoded by the Akt proto-oncogene is catalytically inactive in serum-starved primary and immortalized fibroblasts. Here we show that Akt and the Akt-related kinase AKT2 are activated by PDGF. The activation was rapid and specific, and it was abrogated by mutations in the Akt Pleckstrin homology (PH) domain. The Akt activation was also shown to depend on PDGFR beta tyrosines Y740 and Y751, which bind phosphatidylinositol 3-kinase (PI 3-kinase) upon phosphorylation. Moreover, Akt activation was blocked by the PI 3-kinase-specific inhibitor wortmannin and the dominant inhibitory N17Ras. Conversely, Akt activity was induced following the addition of phosphatidylinositol-3-phosphate to Akt immunoprecipitates from serum-starved cells in vitro. These results identify Akt as a novel target of PI 3-kinase and suggest that the Akt PH domain may be a mediator of PI 3-kinase signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis

            Pulmonary fibrosis is the consequence of a variety of diseases with no satisfying treatment option. Therapy-induced fibrosis also limits the efficacy of chemotherapy and radiotherapy in numerous cancers. Here, we studied the potential of platelet-derived growth factor (PDGF) receptor tyrosine kinase inhibitors (RTKIs) to attenuate radiation-induced pulmonary fibrosis. Thoraces of C57BL/6 mice were irradiated (20 Gy), and mice were treated with three distinct PDGF RTKIs (SU9518, SU11657, or Imatinib). Irradiation was found to induce severe lung fibrosis resulting in dramatically reduced mouse survival. Treatment with PDGF RTKIs markedly attenuated the development of pulmonary fibrosis in excellent correlation with clinical, histological, and computed tomography results. Importantly, RTKIs also prolonged the life span of irradiated mice. We found that radiation up-regulated expression of PDGF (A–D) isoforms leading to phosphorylation of PDGF receptor, which was strongly inhibited by RTKIs. Our findings suggest a pivotal role of PDGF signaling in the pathogenesis of pulmonary fibrosis and indicate that inhibition of fibrogenesis, rather than inflammation, is critical to antifibrotic treatment. This study points the way to a potential new approach for treating idiopathic or therapy-related forms of lung fibrosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endostatin's antiangiogenic signaling network.

              It is here demonstrated that the set of gene expressions underlying the angiogenic balance in tissues can be molecularly reset en masse by a single protein. Using genome-wide expression profiling, coupled with RT-PCR and phosphorylation analysis, we show that the endogenous angiogenesis inhibitor endostatin downregulates many signaling pathways in human microvascular endothelium associated with proangiogenic activity. Simultaneously, endostatin is found to upregulate many antiangiogenic genes. The result is a unique alignment between the direction of gene regulation and angiogenic status. Profiling further reveals the regulation of genes not heretofore associated with angiogenesis. Our analysis of coregulated genes shows complex interpathway communications in an intricate signaling network that both recapitulates and extends on current understanding of the angiogenic process. More generally, insights into the nature of genetic networking from the cell biologic and therapeutic perspectives are revealed.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BioMed Central (London )
                1471-2407
                2006
                24 March 2006
                : 6
                : 79
                Affiliations
                [1 ]Department of Radiation Oncology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
                [2 ]University of Heidelberg Medical School, Heidelberg, Germany
                [3 ]Department of Clinical Radiology, University Hospital Heidelberg, Germany
                [4 ]SUGEN, Inc., South San Francisco, California 94080-4811, USA
                [5 ]Department of Radiation Oncology, University Hospital Tuebingen, Germany
                [6 ]Department of Diagnostic Radiology, University Hospital Tuebingen, Germany
                [7 ]Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
                [8 ]Department of Mathematics, University of California, Berkeley, CA, USA
                Article
                1471-2407-6-79
                10.1186/1471-2407-6-79
                1458351
                16556328
                7fa8d80d-4cbf-47d2-ab57-66ba49c536ea
                Copyright © 2006 Li et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 September 2005
                : 24 March 2006
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article