22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Conservation at a slow pace: terrestrial gastropods facing fast-changing climate

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Climate change, potentially increased by anthropogenic pressure, is still poorly considered in species status assessments for conservation. Terrestrial gastropods are expected to be greatly impacted, with subsequent effects on ecosystem functioning. We show the need to integrate physiological and behavioural traits to improve projection of the effects of climate change and conservation management for species at risk.

          Abstract

          The climate is changing rapidly, and terrestrial ectotherms are expected to be particularly vulnerable to changes in temperature and water regime, but also to an increase in extreme weather events in temperate regions. Physiological responses of terrestrial gastropods to climate change are poorly studied. This is surprising, because they are of biodiversity significance among litter-dwelling species, playing important roles in ecosystem function, with numerous species being listed as endangered and requiring efficient conservation management. Through a summary of our ecophysiological work on snail and slug species, we gained some insights into physiological and behavioural responses to climate change that we can organize into the following four threat categories. (i) Winter temperature and snow cover. Terrestrial gastropods use different strategies to survive sub-zero temperatures in buffered refuges, such as the litter or the soil. Absence of the insulating snow cover exposes species to high variability in temperature. The extent of specific cold tolerance might influence the potential of local extinction, but also of invasion. (ii) Drought and high temperature. Physiological responses involve high-cost processes that protect against heat and dehydration. Some species decrease activity periods, thereby reducing foraging and reproduction time. Related costs and physiological limits are expected to increase mortality. (iii) Extreme events. Although some terrestrial gastropod communities can have a good resilience to fire, storms and flooding, an increase in the frequency of those events might lead to community impoverishment. (iv) Habitat loss and fragmentation. Given that terrestrial gastropods are poorly mobile, landscape alteration generally results in an increased risk of local extinction, but responses are highly variable between species, requiring studies at the population level. There is a great need for studies involving non-invasive methods on the plasticity of physiological and behavioural responses and the ability for local adaptation, considering the spatiotemporally heterogeneous climatic landscape, to allow efficient management of ecosystems and conservation of biodiversity.

          Related collections

          Most cited references191

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Climate change, adaptation, and phenotypic plasticity: the problem and the evidence

          Many studies have recorded phenotypic changes in natural populations and attributed them to climate change. However, controversy and uncertainty has arisen around three levels of inference in such studies. First, it has proven difficult to conclusively distinguish whether phenotypic changes are genetically based or the result of phenotypic plasticity. Second, whether or not the change is adaptive is usually assumed rather than tested. Third, inferences that climate change is the specific causal agent have rarely involved the testing – and exclusion – of other potential drivers. We here review the various ways in which the above inferences have been attempted, and evaluate the strength of support that each approach can provide. This methodological assessment sets the stage for 11 accompanying review articles that attempt comprehensive syntheses of what is currently known – and not known – about responses to climate change in a variety of taxa and in theory. Summarizing and relying on the results of these reviews, we arrive at the conclusion that evidence for genetic adaptation to climate change has been found in some systems, but is still relatively scarce. Most importantly, it is clear that more studies are needed – and these must employ better inferential methods – before general conclusions can be drawn. Overall, we hope that the present paper and special issue provide inspiration for future research and guidelines on best practices for its execution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The potential for behavioral thermoregulation to buffer "cold-blooded" animals against climate warming.

            Increasing concern about the impacts of global warming on biodiversity has stimulated extensive discussion, but methods to translate broad-scale shifts in climate into direct impacts on living animals remain simplistic. A key missing element from models of climatic change impacts on animals is the buffering influence of behavioral thermoregulation. Here, we show how behavioral and mass/energy balance models can be combined with spatial data on climate, topography, and vegetation to predict impacts of increased air temperature on thermoregulating ectotherms such as reptiles and insects (a large portion of global biodiversity). We show that for most "cold-blooded" terrestrial animals, the primary thermal challenge is not to attain high body temperatures (although this is important in temperate environments) but to stay cool (particularly in tropical and desert areas, where ectotherm biodiversity is greatest). The impact of climate warming on thermoregulating ectotherms will depend critically on how changes in vegetation cover alter the availability of shade as well as the animals' capacities to alter their seasonal timing of activity and reproduction. Warmer environments also may increase maintenance energy costs while simultaneously constraining activity time, putting pressure on mass and energy budgets. Energy- and mass-balance models provide a general method to integrate the complexity of these direct interactions between organisms and climate into spatial predictions of the impact of climate change on biodiversity. This methodology allows quantitative organism- and habitat-specific assessments of climate change impacts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global metabolic impacts of recent climate warming.

              Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.
                Bookmark

                Author and article information

                Journal
                Conserv Physiol
                Conserv Physiol
                conphys
                Conservation Physiology
                Oxford University Press
                2051-1434
                2017
                18 March 2017
                18 March 2017
                : 5
                : 1
                : cox007
                Affiliations
                [1 ] UMR CNRS 6553 EcoBio/OSUR, Station Biologique Paimpont, Université Rennes 1 , 35380 Paimpont, France
                [2 ] UMR CNRS 6553 EcoBio/OSUR, Université Rennes 1 , 35042 Rennes cedex, France
                Author notes
                [* ] Corresponding author: UMR CNRS 6553 EcoBio/OSUR, Station Biologique Paimpont, Université Rennes 1, 35380 Paimpont, France. Tel: +33 29961 8174. Email: annegret.nicolai@ 123456univ-rennes1.fr

                Editor: Steven Cooke

                Article
                cox007
                10.1093/conphys/cox007
                5570025
                7fa9f2e9-b749-474d-9945-ef7851843cba
                © The Author 2017. Published by Oxford University Press and the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 September 2016
                : 26 December 2016
                : 09 February 2017
                Page count
                Pages: 17
                Categories
                Perspectives

                cold tolerance,dispersal,drought resistance,extreme events,habitat alteration,species at risk

                Comments

                Comment on this article