13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Protein Arginine Methylation in mRNP Dynamics

      review-article
      *
      Molecular Biology International
      SAGE-Hindawi Access to Research

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In eukaryotes, messenger RNA biogenesis depends on the ordered and precise assembly of a nuclear messenger ribonucleoprotein particle (mRNP) during transcription. This process requires a well-orchestrated and dynamic sequence of molecular recognition events by specific RNA-binding proteins. Arginine methylation is a posttranslational modification found in a plethora of RNA-binding proteins responsible for mRNP biogenesis. These RNA-binding proteins include both heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins. In this paper, I discuss the mechanisms of action by which arginine methylation modulates various facets of mRNP biogenesis, and how the collective consequences of this modification impart the specificity required to generate a mature, translational- and export-competent mRNP.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          A comprehensive two-hybrid analysis to explore the yeast protein interactome.

          Protein-protein interactions play crucial roles in the execution of various biological functions. Accordingly, their comprehensive description would contribute considerably to the functional interpretation of fully sequenced genomes, which are flooded with novel genes of unpredictable functions. We previously developed a system to examine two-hybrid interactions in all possible combinations between the approximately 6,000 proteins of the budding yeast Saccharomyces cerevisiae. Here we have completed the comprehensive analysis using this system to identify 4,549 two-hybrid interactions among 3,278 proteins. Unexpectedly, these data do not largely overlap with those obtained by the other project [Uetz, P., et al. (2000) Nature (London) 403, 623-627] and hence have substantially expanded our knowledge on the protein interaction space or interactome of the yeast. Cumulative connection of these binary interactions generates a single huge network linking the vast majority of the proteins. Bioinformatics-aided selection of biologically relevant interactions highlights various intriguing subnetworks. They include, for instance, the one that had successfully foreseen the involvement of a novel protein in spindle pole body function as well as the one that may uncover a hitherto unidentified multiprotein complex potentially participating in the process of vesicular transport. Our data would thus significantly expand and improve the protein interaction map for the exploration of genome functions that eventually leads to thorough understanding of the cell as a molecular system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The nonsense-mediated decay RNA surveillance pathway.

            Nonsense-mediated mRNA decay (NMD) is a quality-control mechanism that selectively degrades mRNAs harboring premature termination (nonsense) codons. If translated, these mRNAs can produce truncated proteins with dominant-negative or deleterious gain-of-function activities. In this review, we describe the molecular mechanism of NMD. We first cover conserved factors known to be involved in NMD in all eukaryotes. We then describe a unique protein complex that is deposited on mammalian mRNAs during splicing, which defines a stop codon as premature. Interaction between this exon-junction complex (EJC) and NMD factors assembled at the upstream stop codon triggers a series of steps that ultimately lead to mRNA decay. We discuss whether these proofreading events preferentially occur during a "pioneer" round of translation in higher and lower eukaryotes, their cellular location, and whether they can use alternative EJC factors or act independent of the EJC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics.

              Studies of nonsense-mediated mRNA decay in mammalian cells have proffered unforeseen insights into changes in mRNA-protein interactions throughout the lifetime of an mRNA. Remarkably, mRNA acquires a complex of proteins at each exon-exon junction during pre-mRNA splicing that influences the subsequent steps of mRNA translation and nonsense-mediated mRNA decay. Complex-loaded mRNA is thought to undergo a pioneer round of translation when still bound by cap-binding proteins CBP80 and CBP20 and poly(A)-binding protein 2. The acquisition and loss of mRNA-associated proteins accompanies the transition from the pioneer round to subsequent rounds of translation, and from translational competence to substrate for nonsense-mediated mRNA decay.
                Bookmark

                Author and article information

                Journal
                Mol Biol Int
                MBI
                Molecular Biology International
                SAGE-Hindawi Access to Research
                2090-2182
                2090-2190
                2011
                7 April 2011
                : 2011
                : 163827
                Affiliations
                Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY 14260, USA
                Author notes
                *Michael C. Yu: mcyu@ 123456buffalo.edu

                Academic Editor: Robert B. Denman

                Article
                10.4061/2011/163827
                3195771
                22091396
                7facdb84-8bed-4703-acce-752062214ee9
                Copyright © 2011 Michael C. Yu.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 January 2011
                : 12 February 2011
                Categories
                Review Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article