74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immunogenic Salivary Proteins of Triatoma infestans: Development of a Recombinant Antigen for the Detection of Low-Level Infestation of Triatomines

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. The most effective vector, Triatoma infestans, has been controlled successfully in much of Latin America using insecticide spraying. Though rarely undertaken, surveillance programs are necessary in order to identify new infestations and estimate the intensity of triatomine bug infestations in domestic and peridomestic habitats. Since hosts exposed to triatomines develop immune responses to salivary antigens, these responses can be evaluated for their usefulness as epidemiological markers to detect infestations of T. infestans.

          Methodology/Principal Findings

          T. infestans salivary proteins were separated by 2D-gel electrophoresis and tested for their immunogenicity by Western blotting using sera from chickens and guinea pigs experimentally exposed to T. infestans. From five highly immunogenic protein spots, eight salivary proteins were identified by nano liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS/MS) and comparison to the protein sequences of the National Center for Biotechnology Information (NCBI) database and expressed sequence tags of a unidirectionally cloned salivary gland cDNA library from T. infestans combined with the NCBI yeast protein sub-database. The 14.6 kDa salivary protein [gi|149689094] was produced as recombinant protein (r TiSP14.6) in a mammalian cell expression system and recognized by all animal sera. The specificity of r TiSP14.6 was confirmed by the lack of reactivity to anti-mosquito and anti-sand fly saliva antibodies. However, r TiSP14.6 was recognized by sera from chickens exposed to four other triatomine species, Triatoma brasiliensis, T. sordida, Rhodnius prolixus, and Panstrongylus megistus and by sera of chickens from an endemic area of T. infestans and Chagas disease in Bolivia.

          Conclusions/Significance

          The recombinant r TiSP14.6 is a suitable and promising epidemiological marker for detecting the presence of small numbers of different species of triatomines and could be developed for use as a new tool in surveillance programs, especially to corroborate vector elimination in Chagas disease vector control campaigns.

          Author Summary

          Chagas disease, caused by Trypanosoma cruzi, is a neglected disease with 20 million people at risk in Latin America. The main control strategies are based on insecticide spraying to eliminate the domestic vectors, the most effective of which is Triatoma infestans. This approach has been very successful in some areas. However, there is a constant risk of recrudescence in once-endemic regions resulting from the re-establishment of T. infestans and the invasion of other triatomine species. To detect low-level infestations of triatomines after insecticide spraying, we have developed a new epidemiological tool based on host responses against salivary antigens of T. infestans. We identified and synthesized a highly immunogenic salivary protein. This protein was used successfully to detect differences in the infestation level of T. infestans of households in Bolivia and the exposure to other triatomine species. The development of such an exposure marker to detect low-level infestation may also be a useful tool for other disease vectors.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          The lipocalin protein family: structure and function.

          The lipocalin protein family is a large group of small extracellular proteins. The family demonstrates great diversity at the sequence level; however, most lipocalins share three characteristic conserved sequence motifs, the kernel lipocalins, while a group of more divergent family members, the outlier lipocalins, share only one. Belying this sequence dissimilarity, lipocalin crystal structures are highly conserved and comprise a single eight-stranded continuously hydrogen-bonded antiparallel beta-barrel, which encloses an internal ligand-binding site. Together with two other families of ligand-binding proteins, the fatty-acid-binding proteins (FABPs) and the avidins, the lipocalins form part of an overall structural superfamily: the calycins. Members of the lipocalin family are characterized by several common molecular-recognition properties: the ability to bind a range of small hydrophobic molecules, binding to specific cell-surface receptors and the formation of complexes with soluble macromolecules. The varied biological functions of the lipocalins are mediated by one or more of these properties. In the past, the lipocalins have been classified as transport proteins; however, it is now clear that the lipocalins exhibit great functional diversity, with roles in retinol transport, invertebrate cryptic coloration, olfaction and pheromone transport, and prostaglandin synthesis. The lipocalins have also been implicated in the regulation of cell homoeostasis and the modulation of the immune response, and, as carrier proteins, to act in the general clearance of endogenous and exogenous compounds.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites.

            O-GalNAc-glycosylation is one of the main types of glycosylation in mammalian cells. No consensus recognition sequence for the O-glycosyltransferases is known, making prediction methods necessary to bridge the gap between the large number of known protein sequences and the small number of proteins experimentally investigated with regard to glycosylation status. From O-GLYCBASE a total of 86 mammalian proteins experimentally investigated for in vivo O-GalNAc sites were extracted. Mammalian protein homolog comparisons showed that a glycosylated serine or threonine is less likely to be precisely conserved than a nonglycosylated one. The Protein Data Bank was analyzed for structural information, and 12 glycosylated structures were obtained. All positive sites were found in coil or turn regions. A method for predicting the location for mucin-type glycosylation sites was trained using a neural network approach. The best overall network used as input amino acid composition, averaged surface accessibility predictions together with substitution matrix profile encoding of the sequence. To improve prediction on isolated (single) sites, networks were trained on isolated sites only. The final method combines predictions from the best overall network and the best isolated site network; this prediction method correctly predicted 76% of the glycosylated residues and 93% of the nonglycosylated residues. NetOGlyc 3.1 can predict sites for completely new proteins without losing its performance. The fact that the sites could be predicted from averaged properties together with the fact that glycosylation sites are not precisely conserved indicates that mucin-type glycosylation in most cases is a bulk property and not a very site-specific one. NetOGlyc 3.1 is made available at www.cbs.dtu.dk/services/netoglyc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives.

              This review addresses the problems insects and ticks face to feed on blood and the solutions these invertebrates engender to overcome these obstacles, including a sophisticated salivary cocktail of potent pharmacologic compounds. Recent advances in transcriptome and proteome research allow an unprecedented insight into the complexity of these compounds, indicating that their molecular diversity as well as the diversity of their targets is still larger than previously thought.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                October 2009
                20 October 2009
                : 3
                : 10
                : e532
                Affiliations
                [1 ]School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, United Kingdom
                [2 ]Group Zoology/Parasitology, Ruhr-Universität Bochum, Bochum, Germany
                [3 ]Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
                [4 ]Vector Molecular Biology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
                [5 ]Laboratory of Chagas Disease and Immunoparasitology, Biology Department–Facultad de Ciencias y Tecnología, Universidad Mayor de San Simón, Cochabamba, Bolivia
                [6 ]International Studies of Malaria and Entomology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
                [7 ]Laboratory of Host-Parasite Interface, University of Brasilia, Brasilia-DF, Brazil
                [8 ]Sanaria, Rockville, Maryland, United States of America
                National Yang-Ming University, Taiwan
                Author notes

                Conceived and designed the experiments: AS SH NC CRT PFB JGV JMS GAS. Performed the experiments: AS SH NC CRT NMM JCCH. Analyzed the data: AS SH NC CS JMS. Contributed reagents/materials/analysis tools: JCCH TCA KM HEM JMCR JGV JMS GAS. Wrote the paper: AS JMS GAS.

                ¶ These authors are joint senior authors on this work.

                Article
                09-PNTD-RA-0148R3
                10.1371/journal.pntd.0000532
                2760138
                19841746
                7fb8058f-bf2c-40ce-89b8-3f7509cf06a4
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 7 April 2009
                : 16 September 2009
                Page count
                Pages: 13
                Categories
                Research Article
                Biotechnology/Protein Chemistry and Proteomics
                Immunology/Immune Response
                Infectious Diseases/Epidemiology and Control of Infectious Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article