45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of the Proteome of Cytoplasmic Lipid Droplets in Mouse Enterocytes after a Dietary Fat Challenge

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dietary fat absorption by the small intestine is a multistep process that regulates the uptake and delivery of essential nutrients and energy. One step of this process is the temporary storage of dietary fat in cytoplasmic lipid droplets (CLDs). The storage and mobilization of dietary fat is thought to be regulated by proteins that associate with the CLD; however, mechanistic details of this process are currently unknown. In this study we analyzed the proteome of CLDs isolated from enterocytes harvested from the small intestine of mice following a dietary fat challenge. In this analysis we identified 181 proteins associated with the CLD fraction, of which 37 are associated with known lipid related metabolic pathways. We confirmed the localization of several of these proteins on or around the CLD through confocal and electron microscopy, including perilipin 3, apolipoprotein A-IV, and acyl-CoA synthetase long-chain family member 5. The identification of the enterocyte CLD proteome provides new insight into potential regulators of CLD metabolism and the process of dietary fat absorption.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Activities at the Universal Protein Resource (UniProt)

          The mission of the Universal Protein Resource (UniProt) (http://www.uniprot.org) is to provide the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequences and functional annotation. It integrates, interprets and standardizes data from literature and numerous resources to achieve the most comprehensive catalog possible of protein information. The central activities are the biocuration of the UniProt Knowledgebase and the dissemination of these data through our Web site and web services. UniProt is produced by the UniProt Consortium, which consists of groups from the European Bioinformatics Institute (EBI), the SIB Swiss Institute of Bioinformatics (SIB) and the Protein Information Resource (PIR). UniProt is updated and distributed every 4 weeks and can be accessed online for searches or downloads.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets.

            Lipid droplets (LDs) store metabolic energy and membrane lipid precursors. With excess metabolic energy, cells synthesize triacylglycerol (TG) and form LDs that grow dramatically. It is unclear how TG synthesis relates to LD formation and growth. Here, we identify two LD subpopulations: smaller LDs of relatively constant size, and LDs that grow larger. The latter population contains isoenzymes for each step of TG synthesis. Glycerol-3-phosphate acyltransferase 4 (GPAT4), which catalyzes the first and rate-limiting step, relocalizes from the endoplasmic reticulum (ER) to a subset of forming LDs, where it becomes stably associated. ER-to-LD targeting of GPAT4 and other LD-localized TG synthesis isozymes is required for LD growth. Key features of GPAT4 ER-to-LD targeting and function in LD growth are conserved between Drosophila and mammalian cells. Our results explain how TG synthesis is coupled with LD growth and identify two distinct LD subpopulations based on their capacity for localized TG synthesis. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes.

              Adipocytes hold the body's major energy reserve as triacylglycerols packaged in large lipid droplets. Perilipins, the most abundant proteins on these lipid droplets, play a critical role in facilitating both triacylglycerol storage and hydrolysis. The stimulation of lipolysis by beta-adrenergic agonists triggers rapid phosphorylation of perilipin and translocation of hormone-sensitive lipase to the surfaces of lipid droplets and more gradual fragmentation and dispersion of micro-lipid droplets. Because few lipid droplet-associated proteins have been identified in adipocytes, we isolated lipid droplets from basal and lipolytically stimulated 3T3-L1 adipocytes and identified the component proteins by mass spectrometry. Structural proteins identified in both preparations include perilipin, S3-12, vimentin, and TIP47; in contrast, adipophilin, caveolin-1, and tubulin selectively localized to droplets in lipolytically stimulated cells. Lipid metabolic enzymes identified in both preparations include hormone-sensitive lipase, lanosterol synthase, NAD(P)-dependent steroid dehydrogenase-like protein, acyl-CoA synthetase, long chain family member (ACSL) 1, and CGI-58. 17-beta-Hydroxysteroid dehydrogenase, type 7, was identified only in basal preparations, whereas ACSL3 and 4 and two short-chain reductase/dehydrogenases were identified on droplets from lipolytically stimulated cells. Additionally, both preparations contained FSP27, ribophorin I, EHD2, diaphorase I, and ancient ubiquitous protein. Basal preparations contained CGI-49, whereas lipid droplets from lipolytically stimulated cells contained several Rab GTPases and tumor protein D54. A close association of mitochondria with lipid droplets was suggested by the identification of pyruvate carboxylase, prohibitin, and a subunit of ATP synthase in the preparations. Thus, adipocyte lipid droplets contain specific structural proteins as well as lipid metabolic enzymes; the structural reorganization of lipid droplets in response to the hormonal stimulation of lipolysis is accompanied by increases in the relative mass of several proteins and the recruitment of additional proteins.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                18 May 2015
                2015
                : 10
                : 5
                : e0126823
                Affiliations
                [1 ]Department of Nutrition Science, Purdue University, West Lafayette, Indiana, United States of America
                [2 ]Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
                [3 ]Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
                [4 ]Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
                [5 ]Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States of America
                National Institute of Agronomic Research, FRANCE
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: KKB TD. Performed the experiments: TD DS VEH. Analyzed the data: KKB TD JMG VEH LNP RJK ASG. Contributed reagents/materials/analysis tools: KKB TD DS JMG VEH LNP RJK ASG. Wrote the paper: KKB TD.

                Article
                PONE-D-14-50570
                10.1371/journal.pone.0126823
                4436333
                25992653
                7fb84d1f-c561-44e2-b3d1-c8bbe33cd312
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 10 November 2014
                : 8 April 2015
                Page count
                Figures: 6, Tables: 2, Pages: 19
                Funding
                This project was supported by the Indiana Clinical and Translational Sciences Institute, by Grant # UL1TR001108 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award (KKB), Grant # 7-13-IN-05 by the American Diabetes Association, Innovation Award (KKB), Grant # R01 DK098606 from the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (KKB, ASG), Grant # P30 DK046200 National Institutes of Health, NIDDK (ASG), Grant # U01 ES020958 National Institutes of Health, National Institute of Environmental Health Science (ASG), and the Purdue Research Foundation, Graduate Fellowship Award (KKB, TD). This material is based upon work supported by the U.S. Department of Agriculture, under agreement No. 58-1950-4-003 (ASG). Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the U.S. Department of Agriculture. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article