21
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      First cases of coronavirus disease 2019 (COVID-19) in France: surveillance, investigations and control measures, January 2020

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) causing a cluster of respiratory infections (coronavirus disease 2019, COVID-19) in Wuhan, China, was identified on 7 January 2020. The epidemic quickly disseminated from Wuhan and as at 12 February 2020, 45,179 cases have been confirmed in 25 countries, including 1,116 deaths. Strengthened surveillance was implemented in France on 10 January 2020 in order to identify imported cases early and prevent secondary transmission. Three categories of risk exposure and follow-up procedure were defined for contacts. Three cases of COVID-19 were confirmed on 24 January, the first cases in Europe. Contact tracing was immediately initiated. Five contacts were evaluated as at low risk of exposure and 18 at moderate/high risk. As at 12 February 2020, two cases have been discharged and the third one remains symptomatic with a persistent cough, and no secondary transmission has been identified. Effective collaboration between all parties involved in the surveillance and response to emerging threats is required to detect imported cases early and to implement adequate control measures.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: not found

          Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia

          Abstract Background The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the first 425 confirmed cases in Wuhan to determine the epidemiologic characteristics of NCIP. Methods We collected information on demographic characteristics, exposure history, and illness timelines of laboratory-confirmed cases of NCIP that had been reported by January 22, 2020. We described characteristics of the cases and estimated the key epidemiologic time-delay distributions. In the early period of exponential growth, we estimated the epidemic doubling time and the basic reproductive number. Results Among the first 425 patients with confirmed NCIP, the median age was 59 years and 56% were male. The majority of cases (55%) with onset before January 1, 2020, were linked to the Huanan Seafood Wholesale Market, as compared with 8.6% of the subsequent cases. The mean incubation period was 5.2 days (95% confidence interval [CI], 4.1 to 7.0), with the 95th percentile of the distribution at 12.5 days. In its early stages, the epidemic doubled in size every 7.4 days. With a mean serial interval of 7.5 days (95% CI, 5.3 to 19), the basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9). Conclusions On the basis of this information, there is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019. Considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere. Measures to prevent or reduce transmission should be implemented in populations at risk. (Funded by the Ministry of Science and Technology of China and others.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster

            Summary Background An ongoing outbreak of pneumonia associated with a novel coronavirus was reported in Wuhan city, Hubei province, China. Affected patients were geographically linked with a local wet market as a potential source. No data on person-to-person or nosocomial transmission have been published to date. Methods In this study, we report the epidemiological, clinical, laboratory, radiological, and microbiological findings of five patients in a family cluster who presented with unexplained pneumonia after returning to Shenzhen, Guangdong province, China, after a visit to Wuhan, and an additional family member who did not travel to Wuhan. Phylogenetic analysis of genetic sequences from these patients were done. Findings From Jan 10, 2020, we enrolled a family of six patients who travelled to Wuhan from Shenzhen between Dec 29, 2019 and Jan 4, 2020. Of six family members who travelled to Wuhan, five were identified as infected with the novel coronavirus. Additionally, one family member, who did not travel to Wuhan, became infected with the virus after several days of contact with four of the family members. None of the family members had contacts with Wuhan markets or animals, although two had visited a Wuhan hospital. Five family members (aged 36–66 years) presented with fever, upper or lower respiratory tract symptoms, or diarrhoea, or a combination of these 3–6 days after exposure. They presented to our hospital (The University of Hong Kong-Shenzhen Hospital, Shenzhen) 6–10 days after symptom onset. They and one asymptomatic child (aged 10 years) had radiological ground-glass lung opacities. Older patients (aged >60 years) had more systemic symptoms, extensive radiological ground-glass lung changes, lymphopenia, thrombocytopenia, and increased C-reactive protein and lactate dehydrogenase levels. The nasopharyngeal or throat swabs of these six patients were negative for known respiratory microbes by point-of-care multiplex RT-PCR, but five patients (four adults and the child) were RT-PCR positive for genes encoding the internal RNA-dependent RNA polymerase and surface Spike protein of this novel coronavirus, which were confirmed by Sanger sequencing. Phylogenetic analysis of these five patients' RT-PCR amplicons and two full genomes by next-generation sequencing showed that this is a novel coronavirus, which is closest to the bat severe acute respiatory syndrome (SARS)-related coronaviruses found in Chinese horseshoe bats. Interpretation Our findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions. Funding The Shaw Foundation Hong Kong, Michael Seak-Kan Tong, Respiratory Viral Research Foundation Limited, Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Marina Man-Wai Lee, the Hong Kong Hainan Commercial Association South China Microbiology Research Fund, Sanming Project of Medicine (Shenzhen), and High Level-Hospital Program (Guangdong Health Commission).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR

              Background The ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur. Aim We aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available. Methods Here we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology. Results The workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive – Global (EVAg), a European Union infrastructure project. Conclusion The present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks.
                Bookmark

                Author and article information

                Journal
                Euro Surveill
                Euro Surveill
                eurosurveillance
                Eurosurveillance
                European Centre for Disease Prevention and Control (ECDC)
                1025-496X
                1560-7917
                13 February 2020
                : 25
                : 6
                : 2000094
                Affiliations
                [1 ]Santé publique France, Direction des maladies infectieuses, Saint-Maurice, France
                [2 ]Santé publique France, Direction des régions, Saint-Maurice, France
                [3 ]Santé publique France, Direction des régions, Cellule Régionale Ile-de-France, Paris, France
                [4 ]Agence Régionale de Santé Ile-de-France, Paris, France
                [5 ]Agence Régionale de Santé Nouvelle-Aquitaine, Bordeaux, France
                [6 ]Santé publique France, Direction des régions, Cellule Régionale Nouvelle-Aquitaine, Bordeaux, France
                [7 ]Centre National de Référence des virus des infections respiratoires, dont la grippe, Institut Pasteur, Paris, France
                [8 ]AP-HP, Hôpital Bichat, Service des maladies infectieuses et tropicales, Paris, France
                [9 ]Centre Hospitalier Universitaire de Bordeaux, Service des maladies infectieuses et tropicales, Bordeaux GeoSentinel Site, Bordeaux, France
                [10 ]UMR 1219, Université de Bordeaux, Bordeaux, France
                [11 ]Université de Paris, IAME, INSERM, Paris, France
                [12 ]Direction Générale de la Santé, Ministère des solidarités et de la santé, Centre opérationnel de réception et de régulation des urgences sanitaires et sociales, Paris, France
                [13 ]Santé publique France, Direction alerte et crise, Saint-Maurice, France
                [14 ]The members of the investigation team are listed at the end of the article
                Author notes

                Correspondence: Sibylle Bernard-Stoecklin ( sibylle.bernard-stoecklin@ 123456santepubliquefrance.fr )

                Article
                2000094 2000094
                10.2807/1560-7917.ES.2020.25.6.2000094
                7029452
                32070465
                7fbae018-b09a-4e01-a7f6-3c87d0c79c1a
                This article is copyright of the authors or their affiliated institutions, 2020.

                This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.

                History
                : 05 February 2020
                : 11 February 2020
                Categories
                Outbreaks
                Custom metadata
                4

                coronavirus,covid-19, sars-cov-2, 2019-ncov,surveillance,contact tracing,containment,france

                Comments

                Comment on this article