2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Total internal reflection microscopy and atomic force microscopy (TIRFM-AFM) to study stress transduction mechanisms in endothelial cells.

        1 , ,
      Critical reviews in biomedical engineering

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cytoskeleton plays a key role in providing strength and structure to the cell. A force balance exists between the cytoskeleton and the extracellular matrix/substratum via the focal contact regions. The purpose of this study is to integrate atomic force microscopy (AFM) and total internal reflection fluorescence microscopy (TIRFM) data to determine the effect of localized force application over the cell surface on the cell's focal contacts size and position. TIRFM gives detailed information on the cell-substrate contact regions and AFM is a tool for elasticity measurements, force application, and topographic surface mapping of the cell. TIRFM data were calibrated by varying the intensity of the evanescent wave to change the interfacial angle at the glass-cell interface. The individual focal contact intensity was found to decrease with increasing interfacial angles from 66 degrees to 80 degrees as the depth of penetration varied from 150 to 66 nm. A measure of cellular mechanical properties was obtained by collecting a set of force curves over the entire cell using the Bioscope AFM. The nuclear region appears to be stiffer than the cell body. Preliminary results of the nanonewtons force application to the cell surface indicate that the cell-substrate contacts rearrange to offset the force. It is evident that the stress applied to the surface is transmitted to the cell-substrate contact region.

          Related collections

          Author and article information

          Journal
          Crit Rev Biomed Eng
          Critical reviews in biomedical engineering
          0278-940X
          0278-940X
          2000
          : 28
          : 1-2
          Affiliations
          [1 ] Center for Cellular and Biosurface Engineering, Department of Biomedical Engineering, Duke University, USA.
          Article
          10.1615/CritRevBiomedEng.v28.i12.340
          10999387
          7fc8dbea-93e3-4f60-a6f5-52cd2a13bc9e
          History

          Comments

          Comment on this article