43
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bispecific antibodies: design, therapy, perspectives

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antibodies (Abs) containing two different antigen-binding sites in one molecule are called bispecific. Bispecific Abs (BsAbs) were first described in the 1960s, the first monoclonal BsAbs were generated in the 1980s by hybridoma technology, and the first article describing the therapeutic use of BsAbs was published in 1992, but the number of papers devoted to BsAbs has increased significantly in the last 10 years. Particular interest in BsAbs is due to their therapeutic use. In the last decade, two BsAbs – catumaxomab in 2009 and blinatumomab in 2014, were approved for therapeutic use. Papers published in recent years have been devoted to various methods of BsAb generation by genetic engineering and chemical conjugation, and describe preclinical and clinical trials of these drugs in a variety of diseases. This review considers diverse BsAb-production methods, describes features of therapeutic BsAbs approved for medical use, and summarizes the prospects of practical application of promising new BsAbs.

          Related collections

          Most cited references 100

          • Record: found
          • Abstract: found
          • Article: not found

          Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival.

          Blinatumomab, a bispecific single-chain antibody targeting the CD19 antigen, is a member of a novel class of antibodies that redirect T cells for selective lysis of tumor cells. In acute lymphoblastic leukemia (ALL), persistence or relapse of minimal residual disease (MRD) after chemotherapy indicates resistance to chemotherapy and results in hematologic relapse. A phase II clinical study was conducted to determine the efficacy of blinatumomab in MRD-positive B-lineage ALL. Patients with MRD persistence or relapse after induction and consolidation therapy were included. MRD was assessed by quantitative reverse transcriptase polymerase chain reaction for either rearrangements of immunoglobulin or T-cell receptor genes, or specific genetic aberrations. Blinatumomab was administered as a 4-week continuous intravenous infusion at a dose of 15 μg/m2/24 hours. Twenty-one patients were treated, of whom 16 patients became MRD negative. One patient was not evaluable due to a grade 3 adverse event leading to treatment discontinuation. Among the 16 responders, 12 patients had been molecularly refractory to previous chemotherapy. Probability for relapse-free survival is 78% at a median follow-up of 405 days. The most frequent grade 3 and 4 adverse event was lymphopenia, which was completely reversible like most other adverse events. Blinatumomab is an efficacious and well-tolerated treatment in patients with MRD-positive B-lineage ALL after intensive chemotherapy. T cells engaged by blinatumomab seem capable of eradicating chemotherapy-resistant tumor cells that otherwise cause clinical relapse.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Biopharmaceutical benchmarks 2010.

             Markus Walsh (2010)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli.

              In antibodies, a heavy and a light chain variable domain, VH and VL, respectively, pack together and the hypervariable loops on each domain contribute to binding antigen. We find, however, that isolated VH domains with good antigen-binding affinities can also be prepared. Using the polymerase chain reaction, diverse libraries of VH genes were cloned from the spleen genomic DNA of mice immunized with either lysozyme or keyhole-limpet haemocyanin. From these libraries, VH domains were expressed and secreted from Escherichia coli. Binding activities were detected against both antigens, and two VH domains were characterized with affinities for lysozyme in the 20 nM range. Isolated variable domains may offer an alternative to monoclonal antibodies and serve as the key to building high-affinity human antibodies. We suggest the name 'single domain antibodies (dAbs)' for these antigen binding demands.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2018
                22 January 2018
                : 12
                : 195-208
                Affiliations
                Laboratory of Repair Enzymes, Siberian Branch of Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, Novosibirsk State University, Novosibirsk, Russia
                Author notes
                Correspondence: Sergey E Sedykh, Laboratory of Repair Enzymes, Siberian Branch of Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia, Tel +7 91 3727 1000, Email sedyh@ 123456niboch.nsc.ru
                Article
                dddt-12-195
                10.2147/DDDT.S151282
                5784585
                © 2018 Sedykh et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Review

                Comments

                Comment on this article