14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The sonic hedgehog pathway mediates brain plasticity and subsequent functional recovery after bone marrow stromal cell treatment of stroke in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone marrow stromal cells (MSCs) improve neurologic recovery after middle cerebral artery occlusion (MCAo). To examine whether in vivo blockage of the endogenous sonic hedgehog (Shh) pathway affects grafted MSC-induced neurologic benefits, MCAo mice were administered: vehicle (control); cyclopamine (CP)— a specific Shh pathway inhibitor; MSC; and MSC and cyclopamine (MSC-CP). Neurologic function was evaluated after MCAo. Electron microscopy and immunofluorescence staining were employed to measure synapse density, protein expression of tissue plasminogen activator (tPA), and Shh in parenchymal cells in the ischemic boundary zone (IBZ), respectively. Marrow stromal cell treatment significantly enhanced functional recovery after ischemia, concurrent with increases of synaptophysin, synapse density, and myelinated axons along the IBZ, and significantly increased tPA and Shh expression in astrocytes and neurons compared with control. After treatment with MSC-CP or CP, the above effects were reversed. Co-culture of MSCs with cortical neurons confirmed the effect of Shh on MSC-mediated neurite outgrowth. Our data support the hypothesis that the Shh pathway mediates brain plasticity via tPA and thereby functional recovery after treatment of stroke with MSCs.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth.

          Multipotent mesenchymal stromal cells (MSCs) have potential therapeutic benefit for the treatment of neurological diseases and injury. MSCs interact with and alter brain parenchymal cells by direct cell-cell communication and/or by indirect secretion of factors and thereby promote functional recovery. In this study, we found that MSC treatment of rats subjected to middle cerebral artery occlusion (MCAo) significantly increased microRNA 133b (miR-133b) level in the ipsilateral hemisphere. In vitro, miR-133b levels in MSCs and in their exosomes increased after MSCs were exposed to ipsilateral ischemic tissue extracts from rats subjected to MCAo. miR-133b levels were also increased in primary cultured neurons and astrocytes treated with the exosome-enriched fractions released from these MSCs. Knockdown of miR-133b in MSCs confirmed that the increased miR-133b level in astrocytes is attributed to their transfer from MSCs. Further verification of this exosome-mediated intercellular communication was performed using a cel-miR-67 luciferase reporter system and an MSC-astrocyte coculture model. Cel-miR-67 in MSCs was transferred to astrocytes via exosomes between 50 and 100 nm in diameter. Our data suggest that the cel-miR-67 released from MSCs was primarily contained in exosomes. A gap junction intercellular communication inhibitor arrested the exosomal microRNA communication by inhibiting exosome release. Cultured neurons treated with exosome-enriched fractions from MSCs exposed to 72 hours post-MCAo brain extracts significantly increased the neurite branch number and total neurite length. This study provides the first demonstration that MSCs communicate with brain parenchymal cells and may regulate neurite outgrowth by transfer of miR-133b to neural cells via exosomes. Copyright © 2012 AlphaMed Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke.

            Thrombolytic treatment of ischemic stroke with tissue plasminogen activator (tPA) is markedly limited owing to concerns about hemorrhagic complications and the requirement that tPA be administered within 3 h of symptoms. Here we report that tPA activation of latent platelet-derived growth factor-CC (PDGF-CC) may explain these limitations. Intraventricular injection of tPA or active PDGF-CC, in the absence of ischemia, leads to significant increases in cerebrovascular permeability. In contrast, co-injection of neutralizing antibodies to PDGF-CC with tPA blocks this increased permeability, indicating that PDGF-CC is a downstream substrate of tPA within the neurovascular unit. These effects are mediated through activation of PDGF-alpha receptors (PDGFR-alpha) on perivascular astrocytes, and treatment of mice with the PDGFR-alpha antagonist imatinib after ischemic stroke reduces both cerebrovascular permeability and hemorrhagic complications associated with late administration of thrombolytic tPA. These data demonstrate that PDGF signaling regulates blood-brain barrier permeability and suggest potential new strategies for stroke treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats.

              We tested the hypothesis that intravenous infusion of human bone marrow stromal cells (hMSCs) promotes vascular endothelial growth factor (VEGF) secretion, VEGF receptor 2 (VEGFR2) expression and angiogenesis in the ischemic boundary zone (IBZ) after stroke. hMSCs (1x10(6)) were intravenously injected into rats 24 hours after middle cerebral artery occlusion (MCAo). Laser scanning confocal microscopy (LSCM), immunohistochemistry and ELISA were performed to assay angiogenesis and levels of human and rat VEGF in the host brain, respectively. In addition, capillary-like tube formation was measured using mouse brain-derived endothelial cells (MBDECs). Morphological and three dimensional image analyses revealed significant (P<0.05) increases in numbers of enlarged and thin walled blood vessels and numbers of newly formed capillaries at the boundary of the ischemic lesion in rats (n=12) treated with hMSCs compared with numbers in rats (n=12) treated with PBS. ELISA measurements showed that treatment with hMSCs significantly (P<0.05) raised endogenous rat VEGF levels in the IBZ from 10.5+/-1.7 ng/mL in the control group to 17.5+/-1.6 ng/mL in the hMSC-treated group. In addition, treatment with hMSCs increased endogenous VEGFR2 immunoreactivity. In vitro, when MBDECs were incubated with the supernatant obtained from cultured hMSCs, capillary-like tube formation was significantly (P<0.01) induced. However, hMSC-induced capillary-like tube formation was significantly (P<0.01) inhibited when the endothelial cells were incubated with the supernatant from hMSCs in the presence of a neutralizing anti-VEGFR2. These data suggest that treatment of stroke with hMSCs enhances angiogenesis in the host brain and hMSC-enhanced angiogenesis is mediated by increases in levels of endogenous rat VEGF and VEGFR2.
                Bookmark

                Author and article information

                Journal
                J Cereb Blood Flow Metab
                J. Cereb. Blood Flow Metab
                Journal of Cerebral Blood Flow & Metabolism
                Nature Publishing Group
                0271-678X
                1559-7016
                July 2013
                03 April 2013
                1 July 2013
                : 33
                : 7
                : 1015-1024
                Affiliations
                [1 ]Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing, People's Republic of China
                [2 ]Department of Neurology, Henry Ford Hospital , Detroit, Michigan, USA
                [3 ]Department of Physics, Oakland University , Rochester, Michigan, USA
                Author notes
                [* ]Department of Neurology, Henry Ford Hospital , 2799 West Grand Boulevard, Detroit, MI 48202, USA. E-mail: chopp@ 123456neuro.hfh.edu
                Article
                jcbfm201350
                10.1038/jcbfm.2013.50
                3705435
                23549381
                7fe4257b-c535-41f7-9585-b8cc58ac4844
                Copyright © 2013 International Society for Cerebral Blood Flow & Metabolism, Inc.

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                Categories
                Original Article

                Neurosciences
                cyclopamine,marrow stromal cells,mcao,neurite outgrowth,sonic hedgehog
                Neurosciences
                cyclopamine, marrow stromal cells, mcao, neurite outgrowth, sonic hedgehog

                Comments

                Comment on this article