0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fabrication of glucose-sensitive protein microcapsules and their applications

      , ,
      Soft Matter
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application.

          The layer-by-layer (LbL) adsorption technique offers an easy and inexpensive process for multilayer formation and allows a variety of materials to be incorporated within the film structures. Therefore, the LbL assembly method can be regarded as a versatile bottom-up nanofabrication technique. Research fields concerned with LbL assembly have developed rapidly but some important physicochemical aspects remain uninvestigated. In this review, we will introduce several examples from physicochemical investigations regarding the basics of this method to advanced research aimed at practical applications. These are selected mostly from recent reports and should stimulate many physical chemists and chemical physicists in the further development of LbL assembly. In order to further understand the mechanism of the LbL assembly process, theoretical work, including thermodynamics calculations, has been conducted. Additionally, the use of molecular dynamics simulation has been proposed. Recently, many kinds of physicochemical molecular interactions, including hydrogen bonding, charge transfer interactions, and stereo-complex formation, have been used. The combination of the LbL method with other fabrication techniques such as spin-coating, spraying, and photolithography has also been extensively researched. These improvements have enabled preparation of LbL films composed of various materials contained in well-designed nanostructures. The resulting structures can be used to investigate basic physicochemical phenomena where relative distances between interacting groups is of great importance. Similarly, LbL structures prepared by such advanced techniques are used widely for development of functional systems for physical applications from photovoltaic devices and field effect transistors to biochemical applications including nano-sized reactors and drug delivery systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications.

            The design of advanced functional materials with nanometer- and micrometer-scale control over their properties is of considerable interest for both fundamental and applied studies because of the many potential applications for these materials in the fields of biomedical materials, tissue engineering, and regenerative medicine. The layer-by-layer deposition technique introduced in the early 1990s by Decher, Moehwald, and Lvov is a versatile technique, which has attracted an increasing number of researchers in recent years due to its wide range of advantages for biomedical applications: ease of preparation under "mild" conditions compatible with physiological media, capability of incorporating bioactive molecules, extra-cellular matrix components and biopolymers in the films, tunable mechanical properties, and spatio-temporal control over film organization. The last few years have seen a significant increase in reports exploring the possibilities offered by diffusing molecules into films to control their internal structures or design "reservoirs," as well as control their mechanical properties. Such properties, associated with the chemical properties of films, are particularly important for designing biomedical devices that contain bioactive molecules. In this review, we highlight recent work on designing and controlling film properties at the nanometer and micrometer scales with a view to developing new biomaterial coatings, tissue engineered constructs that could mimic in vivo cellular microenvironments, and stem cell "niches."
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Release mechanisms for polyelectrolyte capsules.

              Polyelectrolyte capsules have recently been introduced as new microscopic vehicles which could have high potential in the biomedical field. In this critical review we give an introduction to the layer-by-layer (LbL) technique which is used to fabricate these polyelectrolyte capsules as well as to the different triggers that have been exploited to obtain drug release from these capsules. Furthermore, other types of triggered delivery systems are compared and critically discussed with regard to their clinical relevance. (171 references.).
                Bookmark

                Author and article information

                Journal
                SMOABF
                Soft Matter
                Soft Matter
                Royal Society of Chemistry (RSC)
                1744-683X
                1744-6848
                2011
                2011
                : 7
                : 5
                : 1571-1576
                Article
                10.1039/C0SM00627K
                7ff03bbd-c3ae-4886-ab4a-16f8717f3fdb
                © 2011
                History

                Comments

                Comment on this article