44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tiotropium in combination with placebo, salmeterol, or fluticasone-salmeterol for treatment of chronic obstructive pulmonary disease: a randomized trial.

      Annals of internal medicine
      adverse effects, Administration, Inhalation, Adrenergic beta-Agonists, therapeutic use, Aged, Albuterol, analogs & derivatives, Androstadienes, Bronchodilator Agents, Cause of Death, Double-Blind Method, Drug Therapy, Combination, Female, Hospitalization, statistics & numerical data, Humans, Male, Middle Aged, Patient Compliance, Pulmonary Disease, Chronic Obstructive, drug therapy, mortality, physiopathology, Quality of Life, Scopolamine Derivatives, Treatment Outcome

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Treatment of moderate or severe chronic obstructive pulmonary disease (COPD) with combinations of inhaled corticosteroids, long-acting beta-agonists, and long-acting anticholinergic bronchodilators is common but unstudied. To determine whether combining tiotropium with salmeterol or fluticasone-salmeterol improves clinical outcomes in adults with moderate to severe COPD compared with tiotropium alone. Randomized, double-blind, placebo-controlled trial conducted from October 2003 to January 2006. 27 academic and community medical centers in Canada. 449 patients with moderate or severe COPD. 1 year of treatment with tiotropium plus placebo, tiotropium plus salmeterol, or tiotropium plus fluticasone-salmeterol. The primary end point was the proportion of patients who experienced an exacerbation of COPD that required treatment with systemic steroids or antibiotics. The proportion of patients in the tiotropium plus placebo group who experienced an exacerbation (62.8%) did not differ from that in the tiotropium plus salmeterol group (64.8%; difference, -2.0 percentage points [95% CI, -12.8 to 8.8 percentage points]) or in the tiotropium plus fluticasone-salmeterol group (60.0%; difference, 2.8 percentage points [CI, -8.2 to 13.8 percentage points]). In sensitivity analyses, the point estimates and 95% confidence bounds shifted in the direction favoring tiotropium plus salmeterol and tiotropium plus fluticasone-salmeterol. Tiotropium plus fluticasone-salmeterol improved lung function (P = 0.049) and disease-specific quality of life (P = 0.01) and reduced the number of hospitalizations for COPD exacerbation (incidence rate ratio, 0.53 [CI, 0.33 to 0.86]) and all-cause hospitalizations (incidence rate ratio, 0.67 [CI, 0.45 to 0.99]) compared with tiotropium plus placebo. In contrast, tiotropium plus salmeterol did not statistically improve lung function or hospitalization rates compared with tiotropium plus placebo. More than 40% of patients who received tiotropium plus placebo and tiotropium plus salmeterol discontinued therapy prematurely, and many crossed over to treatment with open-label inhaled steroids or long-acting beta-agonists. Addition of fluticasone-salmeterol to tiotropium therapy did not statistically influence rates of COPD exacerbation but did improve lung function, quality of life, and hospitalization rates in patients with moderate to severe COPD. International Standard Randomised Controlled Trial registration number: ISRCTN29870041.

          Related collections

          Author and article information

          Comments

          Comment on this article