12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Single Sodium Pyruvate Ingestion Modifies Blood Acid-Base Status and Post-Exercise Lactate Concentration in Humans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study examined the effect of a single sodium pyruvate ingestion on a blood acid-base status and exercise metabolism markers. Nine active, but non-specifically trained, male subjects participated in the double-blind, placebo-controlled, crossover study. One hour prior to the exercise, subjects ingested either 0.1 g·kg −1 of body mass of a sodium pyruvate or placebo. The capillary blood samples were obtained at rest, 60 min after ingestion, and then three and 15 min after completing the workout protocol to analyze acid-base status and lactate, pyruvate, alanine, glucose concentrations. The pulmonary gas exchange, minute ventilation and the heart rate were measured during the exercise at a constant power output, corresponding to ~90% O 2max. The blood pH, bicarbonate and the base excess were significantly higher after sodium pyruvate ingestion than in the placebo trial. The blood lactate concentration was not different after the ingestion, but the post-exercise was significantly higher in the pyruvate trial (12.9 ± 0.9 mM) than in the placebo trial (10.6 ± 0.3 mM, p < 0.05) and remained elevated (nonsignificant) after 15 min of recovery. The blood pyruvate, alanine and glucose concentrations, as well as the overall pulmonary gas exchange during the exercise were not affected by the pyruvate ingestion. In conclusion, the sodium pyruvate ingestion one hour before workout modified the blood acid-base status and the lactate production during the exercise.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Acute dietary nitrate supplementation improves cycling time trial performance.

          Dietary nitrate supplementation has been shown to reduce the O2 cost of submaximal exercise and to improve high-intensity exercise tolerance. However, it is presently unknown whether it may enhance performance during simulated competition. The present study investigated the effects of acute dietary nitrate supplementation on power output (PO), VO2, and performance during 4- and 16.1-km cycling time trials (TT). After familiarization, nine club-level competitive male cyclists were assigned in a randomized, crossover design to consume 0.5 L of beetroot juice (BR; containing ∼ 6.2 mmol of nitrate) or 0.5 L of nitrate-depleted BR (placebo, PL; containing ∼ 0.0047 mmol of nitrate), ∼ 2.5 h before the completion of a 4- and a 16.1-km TT. BR supplementation elevated plasma [nitrite] (PL = 241 ± 125 vs BR = 575 ± 199 nM, P 0.05), but BR significantly increased mean PO during the 4-km (PL = 279 ± 51 vs BR = 292 ± 44 W, P < 0.05) and 16.1-km TT (PL = 233 ± 43 vs BR = 247 ± 44 W, P < 0.01). Consequently, BR improved 4-km performance by 2.8% (PL = 6.45 ± 0.42 vs BR = 6.27 ± 0.35 min, P < 0.05) and 16.1-km performance by 2.7% (PL = 27.7 ± 2.1 vs BR = 26.9 ± 1.8 min, P < 0.01). These results suggest that acute dietary nitrate supplementation with 0.5 L of BR improves cycling economy, as demonstrated by a higher PO for the same VO2 and enhances both 4- and 16.1-km cycling TT performance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transport of lactate and other monocarboxylates across mammalian plasma membranes.

            Transport of L-lactate across the plasma membrane is of considerable importance to almost all mammalian cells. In most cells a specific H(+)-monocarboxylate cotransporter is largely responsible for this process; the capacity of this carrier is usually very high, to support the high rates of production or utilization of L-lactate. The best characterized H(+)-monocarboxylate transporter is that of the erythrocyte membrane, which transports L-lactate and a wide range of other aliphatic monocarboxylates, including pyruvate and the ketone bodies acetoacetate and beta-hydroxybutyrate. This carrier is inhibited by alpha-cyanocinnamate derivatives and some stilbene disulfonates and has been identified as a protein of 35-50 kDa on the basis of purification and specific labeling experiments. Other cells possess similar alpha-cyanocinnamate-sensitive H(+)-linked monocarboxylate transporters, but in some cases there are significant differences in the properties of these systems, sufficient to suggest the existence of a family of such carriers. In particular, cardiac muscle and tumor cells have transporters that differ in their Km values for certain substrates (including stereoselectivity for L- over D-lactate) and in their sensitivity to inhibitors. Mitochondria, bacteria, and yeast also possess H(+)-monocarboxylate transporters that share some properties in common with those in the mammalian plasma membrane but are adapted to their specific roles. However, there are distinct Na(+)-monocarboxylate cotransporters on the luminal surface of intestinal and kidney epithelia, which enable active uptake of lactate, pyruvate, and ketone bodies in these tissues. This article reviews the properties of these transport systems and their role in mammalian metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Amino acid metabolism in exercising man.

              Arterial concentration and net exchange across the leg and splanchnic bed of 19 amino acids were determined in healthy, postabsorptive subjects in the resting state and after 10 and 40 min of exercise on a bicycle ergometer at work intensities of 400, 800, and 1200 kg-m/min. Arterio-portal venous differences were measured in five subjects undergoing elective cholecystectomy. In the resting state significant net release from the leg was noted for 13 amino acids, and significant splanchnic uptake was observed for 10 amino acids. Peripheral release and splanchnic uptake of alanine exceeded that of all other amino acids, accounting for 35-40% of total net amino acid exchange. Alanine and other amino acids were released in small amounts (relative to net splanchnic uptake) by the extrahepatic splanchnic tissues drained by the portal vein. During exercise arterial ananine rose 20-25% with mild exertion and 60-96% at the heavier work loads. Both at rest and during exercise a direct correlation was observed between arterial alanine and arterial pyruvate levels. Net amino acid release across the exercising leg was consistently observed at all levels of work intensity only for alanine. Estimated leg alanine output increased above resting levels in proportion to the work load. Splanchnic alanine uptake during exercise exceeded that of all other amino acids and increased by 15-20% during mild and moderate exercise, primarily as a consequence of augmented fractional extraction of alanine. For all other amino acids, there was no change in arterial concentration during mild exercise. At heavier work loads, increases of 8-35% were noted for isoleucine, leucine, methionine, tyrosine, and phenylalanine, which were attributable to altered splanchnic exchange rather than augmented peripheral release. The data suggest that (a) synthesis of alanine in muscle, presumably by transamination of glucose-derived pyruvate, is increased in exercise probably as a consequence of increased availability of pyruvate and amino groups; (b) circulating alanine serves an important carrier function in the transport of amino groups from peripheral muscle to the liver, particularly during exercise; (c) a glucose-alanine cycle exists whereby alanine, synthesized in muscle, is taken up by the liver and its glucose-derived carbon skeleton is reconverted to glucose.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                16 May 2014
                May 2014
                : 6
                : 5
                : 1981-1992
                Affiliations
                [1 ]Biochemistry Department, Gdansk University of Physical Education and Sport, Gorskiego 1, 80-336 Gdansk, Poland
                [2 ]Physiology Department, Gdansk University of Physical Education and Sport, Gorskiego 1, 80-336 Gdansk, Poland; E-Mails: sylwek-kujach@ 123456o2.pl (S.K.); lasradek@ 123456awf.gda.pl (R.L.)
                [3 ]Department of Physiotherapy, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland; E-Mail: damianwnuk@ 123456gumed.edu.pl
                Author notes
                [* ] Author to whom correspondence should be addressed; E-Mail: robol@ 123456awf.gda.pl ; Tel.: +48-58-5547-214; Fax: +48-58-552-2911
                Article
                nutrients-06-01981
                10.3390/nu6051981
                4042581
                24841105
                80096e4a-bc85-4a71-8b26-a796336565c4
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 17 February 2014
                : 30 April 2014
                : 06 May 2014
                Categories
                Article

                Nutrition & Dietetics
                sodium pyruvate,exercise,blood acid-base status,lactate,alanine
                Nutrition & Dietetics
                sodium pyruvate, exercise, blood acid-base status, lactate, alanine

                Comments

                Comment on this article