Blog
About

22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of ribosomal frameshifting in HIV-1 gag-pol expression.

      Nature

      genetics, Amino Acid Sequence, biosynthesis, Viral Fusion Proteins, physiology, Ribosomes, Retroviridae Proteins, RNA-Directed DNA Polymerase, Protein Biosynthesis, Nucleic Acid Conformation, Molecular Sequence Data, HIV, Gene Products, gag, Base Sequence

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Based on precedents from other retroviruses, the precursor of the human immunodeficiency virus (HIV-1) reverse transcriptase is predicted to be a polyprotein with a relative molecular mass (Mr) of 160,000 (160K) encoded by both the viral pol gene and the upstream gag gene. These two genes lie in different translational reading frames, with the 3' end of gag overlapping the 5' end of pol by 205 or 241 nucleotides. Thus, production of the gag-pol fusion protein would require either messenger RNA processing or translational frameshifting. The latter mechanism has been shown in the synthesis of the gag-pol proteins of two other retroviruses, Rous sarcoma virus (RSV) and mouse mammary tumour virus (MMTV). Here we report that translation of HIV-1 RNA synthesized in vitro by SP6 RNA polymerase yields significant amounts of a gag-pol fusion protein, indicating that efficient ribosomal frameshifting also occurs within the HIV-1 gag-pol overlap region. Site-directed mutagenesis and amino-acid sequencing localized the site of frameshifting to a UUA leucine codon near the 5' end of the overlap.

          Related collections

          Author and article information

          Journal
          2447506
          10.1038/331280a0

          Comments

          Comment on this article