12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Escherichia coli Shiga toxin 1 enhances il-4 transcripts in bovine ileal intraepithelial lymphocytes.

      Veterinary Immunology and Immunopathology
      Animals, Cattle, Cell Movement, immunology, Escherichia coli, chemistry, Flow Cytometry, Ileum, cytology, drug effects, Immunophenotyping, Interferon-gamma, genetics, Interleukin-4, biosynthesis, Lymphocytes, microbiology, physiology, RNA, Messenger, Reverse Transcriptase Polymerase Chain Reaction, Shiga Toxin 1, isolation & purification, pharmacology, Transcription, Genetic, Transforming Growth Factor beta

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Shiga toxin 1 (Stx1) blocks the activation of bovine peripheral and intraepithelial lymphocytes (IEL), implying that the toxin has the potential to retard the host's immune response during intestinal colonization of cattle with human pathogenic Stx-producing Escherichia coli (STEC). Since Stx1 does not eliminate affected lymphocytes by causing cellular death, we assumed that Stx1 disturbs the integrity of the immune regulatory network. We therefore assessed the impact of Stx1 on the expression of selected chemokine and cytokine genes in vitro by real-time RT-PCR and by quantitation of intracellular cytokine proteins. While Stx1 did not alter the amount of mRNA specific for interleukin (IL)-2, IL-10, gamma interferon (IFN-gamma), transforming growth factor beta (TGF-beta), IL-8, 10kDa interferon inducible protein (IP-10), and monocyte chemoattractant protein 1 (MCP-1) in cultured ileal IEL (iIEL), minute concentrations of Stx1 led to an up to 40-fold increase of il-4 transcripts within 6-8h of incubation. Comparative experiments with peripheral lymphocytes revealed that the effect was specific for iIEL. The enhancement of il-4 transcripts in iIEL was not accompanied by apoptosis but required the enzymatic activity of the holotoxin. Nevertheless, iIEL retained their ability to synthesize proteins in the presence of Stx1: 40% of iIEL could be stimulated to synthesize IFN-gamma while less than 10% expressed IL-4 or TGF-beta. Furthermore, iIEL were found to produce granulocyte chemoattractants, but the release of these substances was not different in iIEL cultures incubated with or without Stx1. Although Stx1 did not affect the numbers of iIEL producing either cytokine, these findings point to an altered responsiveness of IEL during bovine STEC infections and shed light on the initial effects Stx1 exerts on the local adaptive immune system.

          Related collections

          Author and article information

          Comments

          Comment on this article