56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Electrically controlled pinning of Dzyaloshinskii-Moriya domain walls

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We propose a method to all-electrically control a domain-wall position in a ferromagnetic nanowire with Dzyaloshinskii-Moriya interaction. The strength of this interaction can be controlled by an external electric field, which in turn allows a fine tuning of the pinning potential of a spin-spiral domain wall. It allows to create more mobile pinning sites and can also be advantageous for ultra-low power electronics.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Magnetic domain-wall racetrack memory.

          Recent developments in the controlled movement of domain walls in magnetic nanowires by short pulses of spin-polarized current give promise of a nonvolatile memory device with the high performance and reliability of conventional solid-state memory but at the low cost of conventional magnetic disk drive storage. The racetrack memory described in this review comprises an array of magnetic nanowires arranged horizontally or vertically on a silicon chip. Individual spintronic reading and writing nanodevices are used to modify or read a train of approximately 10 to 100 domain walls, which store a series of data bits in each nanowire. This racetrack memory is an example of the move toward innately three-dimensional microelectronic devices.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Classics in Magnetics A Phenomenological Theory of Damping in Ferromagnetic Materials

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Magnetic domain-wall logic.

              "Spintronics," in which both the spin and charge of electrons are used for logic and memory operations, promises an alternate route to traditional semiconductor electronics. A complete logic architecture can be constructed, which uses planar magnetic wires that are less than a micrometer in width. Logical NOT, logical AND, signal fan-out, and signal cross-over elements each have a simple geometric design, and they can be integrated together into one circuit. An additional element for data input allows information to be written to domain-wall logic circuits.
                Bookmark

                Author and article information

                Journal
                2015-07-26
                2016-03-29
                Article
                10.1063/1.4944664
                1507.07285
                6e9cc903-8b10-4fa9-823e-18063e1a9ac5

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Appl. Phys. Lett. 108, 122403 (2016)
                5 pages, 2 figures
                cond-mat.mes-hall cond-mat.mtrl-sci

                Condensed matter,Nanophysics
                Condensed matter, Nanophysics

                Comments

                Comment on this article