2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      3D Reconstruction in Canonical Co-ordinate Space from Arbitrarily Oriented 2D Images

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Limited capture range and the requirement to provide high quality initializations for optimization-based 2D/3D image registration methods can significantly degrade the per- formance of 3D image reconstruction and motion compensation pipelines. Challenging clinical imaging scenarios, that contain sig- nificant subject motion such as fetal in-utero imaging, complicate the 3D image and volume reconstruction process. In this paper we present a learning based image registra- tion method capable of predicting 3D rigid transformations of arbitrarily oriented 2D image slices, with respect to a learned canonical atlas co-ordinate system. Only image slice intensity information is used to perform registration and canonical align- ment, no spatial transform initialization is required. To find image transformations we utilize a Convolutional Neural Network (CNN) architecture to learn the regression function capable of mapping 2D image slices to the 3D canonical atlas space. We extensively evaluate the effectiveness of our approach quantitatively on simulated Magnetic Resonance Imaging (MRI), fetal brain imagery with synthetic motion and further demon- strate qualitative results on real fetal MRI data where our method is integrated into a full reconstruction and motion compensation pipeline. Our learning based registration achieves an average spatial prediction error of 7 mm on simulated data and produces qualitatively improved reconstructions for heavily moving fetuses with gestational ages of approximately 20 weeks. Our model provides a general and computationally efficient solution to the 2D-3D registration initialization problem and is suitable for real- time scenarios.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Medical image registration: a review.

          This paper presents a review of automated image registration methodologies that have been used in the medical field. The aim of this paper is to be an introduction to the field, provide knowledge on the work that has been developed and to be a suitable reference for those who are looking for registration methods for a specific application. The registration methodologies under review are classified into intensity or feature based. The main steps of these methodologies, the common geometric transformations, the similarity measures and accuracy assessment techniques are introduced and described.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A CNN Regression Approach for Real-Time 2D/3D Registration.

            In this paper, we present a Convolutional Neural Network (CNN) regression approach to address the two major limitations of existing intensity-based 2-D/3-D registration technology: 1) slow computation and 2) small capture range. Different from optimization-based methods, which iteratively optimize the transformation parameters over a scalar-valued metric function representing the quality of the registration, the proposed method exploits the information embedded in the appearances of the digitally reconstructed radiograph and X-ray images, and employs CNN regressors to directly estimate the transformation parameters. An automatic feature extraction step is introduced to calculate 3-D pose-indexed features that are sensitive to the variables to be regressed while robust to other factors. The CNN regressors are then trained for local zones and applied in a hierarchical manner to break down the complex regression task into multiple simpler sub-tasks that can be learned separately. Weight sharing is furthermore employed in the CNN regression model to reduce the memory footprint. The proposed approach has been quantitatively evaluated on 3 potential clinical applications, demonstrating its significant advantage in providing highly accurate real-time 2-D/3-D registration with a significantly enlarged capture range when compared to intensity-based methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A comparison of similarity measures for use in 2-D-3-D medical image registration.

              A comparison of six similarity measures for use in intensity-based two-dimensional-three-dimensional (2-D-3-D) image registration is presented. The accuracy of the similarity measures are compared to a "gold-standard" registration which has been accurately calculated using fiducial markers. The similarity measures are used to register a computed tomography (CT) scan of a spine phantom to a fluoroscopy image of the phantom. The registration is carried out within a region-of-interest in the fluoroscopy image which is user defined to contain a single vertebra. Many of the problems involved in this type of registration are caused by features which were not modeled by a phantom image alone. More realistic "gold-standard" data sets were simulated using the phantom image with clinical image features overlaid. Results show that the introduction of soft-tissue structures and interventional instruments into the phantom image can have a large effect on the performance of some similarity measures previously applied to 2-D-3-D image registration. Two measures were able to register accurately and robustly even when soft-tissue structures and interventional instruments were present as differences between the images. These measures were pattern intensity and gradient difference. Their registration accuracy, for all the rigid-body parameters except for the source to film translation, was within a root-mean-square (rms) error of 0.54 mm or degrees to the "gold-standard" values. No failures occurred while registering using these measures.
                Bookmark

                Author and article information

                Journal
                19 September 2017
                Article
                1709.06341
                80183e30-102d-430e-8fe2-4dd997050b7b

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cs.CV

                Comments

                Comment on this article