13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ca2+ Buffer Saturation Underlies Paired Pulse Facilitation in Calbindin-D28k-Containing Terminals

      , , , ,
      Neuron
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ca2+ buffer saturation was proposed as a mechanism of paired pulse facilitation (PPF). However, whether it operates under native conditions remained unclear. Here we show that saturation of the endogenous fast Ca2+ buffer calbindin-D28k (CB) plays a major role in PPF at CB-containing synapses. Paired recordings from synaptically connected interneurons and pyramidal neurons in the mouse neocortex revealed that dialysis increased the amplitude of the first response and decreased PPF. Loading the presynaptic terminals with BAPTA or CB rescued the effect of the CB washout. We extended the study to the CB-positive facilitating excitatory mossy fiber-CA3 pyramidal cell synapse. The effects of different extracellular Ca2+ concentrations and of EGTA indicated that PPF in CB-containing terminals depended on Ca2+ influx rather than on the initial release probability. Experiments in CB knockout mice confirmed that buffer saturation is a novel basic presynaptic mechanism for activity-dependent control of synaptic gain.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Article: not found

          Interneurons of the hippocampus.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex.

            1. Dual voltage recordings were made from pairs of adjacent, synaptically connected thick tufted layer 5 pyramidal neurones in brain slices of young rat (14-16 days) somatosensory cortex to examine the physiological properties of unitary EPSPs. Pre- and postsynaptic neurones were filled with biocytin and examined in the light and electron microscope to quantify the morphology of axonal and dendritic arbors and the number and location of synaptic contacts on the target neurone. 2. In 138 synaptic connections between pairs of pyramidal neurones 96 (70%) were unidirectional and 42 (30%) were bidirectional. The probability of finding a synaptic connection in dual recordings was 0.1. Unitary EPSPs evoked by a single presynaptic action potential (AP) had a mean peak amplitude ranging from 0.15 to 5.5 mV in different connections with a mean of 1.3 +/- 1.1 mV, a latency of 1.7 +/- 0.9 ms, a 20-80% rise time of 2.9 +/- 2.3 ms and a decay time constant of 40 +/- 18 ms at 32-24 degrees C and -60 +/- 2 mV membrane potential. 3. Peak amplitudes of unitary EPSPs fluctuated randomly from trial to trial. The coefficient of variation (c.v.) of the unitary EPSP amplitudes ranged from 0.13 to 2.8 in different synaptic connections (mean, 0.52; median, 0.41). The percentage of failures of single APs to evoke a unitary EPSP ranged from 0 to 73% (mean, 14%; median, 7%). Both c.v. and percentage of failures decreased with increasing mean EPSP amplitude. 4. Postsynaptic glutamate receptors which mediate unitary EPSPs at -60 mV were predominantly of the L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor type. Receptors of the N-methyl-D-aspartate (NMDA) type contributed only a small fraction (< 20%) to the voltage-time integral of the unitary EPSP at -60 mV, but their contribution increased at more positive membrane potentials. 5. Branching patterns of dendrites and axon collaterals of forty-five synaptically connected neurones, when examined in the light microscope, indicated that the axonal and dendritic anatomy of both projecting and target neurones and of uni- and bidirectionally connected neurones was uniform. 6. The number of potential synaptic contacts formed by a presynaptic neurone on a target neurone varied between four and eight (mean, 5.5 +/- 1.1 contacts; n = 19 connections). Synaptic contacts were preferentially located on basal dendrites (63%, 82 +/- 35 microns from the soma, n = 67) and apical oblique dendrites (27%, 145 +/- 59 microns, n = 29), and 35% of all contacts were located on tertiary basal dendritic branches. The mean geometric distances (from the soma) of the contacts of a connection varied between 80 and 585 microns (mean, 147 microns; median, 105 microns). The correlation between EPSP amplitude and the number of morphologically determined synaptic contacts or the mean geometric distances from the soma was only weak (correlation coefficients were 0.2 and 0.26, respectively). 7. Compartmental models constructed from camera lucida drawings of eight target neurones showed that synaptic contacts were located at mean electrotonic distances between 0.07 and 0.33 from the soma (mean, 0.13). Simulations of unitary EPSPs, assuming quantal conductance changes with fast rise time and short duration, indicated that amplitudes of quantal EPSPs at the soma were attenuated, on average, to < 10% of dendritic EPSPs and varied in amplitude up to 10-fold depending on the dendritic location of synaptic contacts. The inferred quantal peak conductance increase varied between 1.5 and 5.5 nS (mean, 3 nS). 8. The combined physiological and morphological measurements in conjunction with EPSP simulations indicated that the 20-fold range in efficacy of the synaptic connections between thick tufted pyramidal neurones, which have their synaptic contacts preferentially located on basal and apical oblique dendrites, was due to differences in transmitter release probability of the projecting neurones and, to a lesser extent, to differenc
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex.

              A puzzling feature of the neocortex is the rich array of inhibitory interneurons. Multiple neuron recordings revealed numerous electrophysiological-anatomical subclasses of neocortical gamma-aminobutyric acid-ergic (GABAergic) interneurons and three types of GABAergic synapses. The type of synapse used by each interneuron to influence its neighbors follows three functional organizing principles. These principles suggest that inhibitory synapses could shape the impact of different interneurons according to their specific spatiotemporal patterns of activity and that GABAergic interneuron and synapse diversity may enable combinatorial inhibitory effects in the neocortex.
                Bookmark

                Author and article information

                Journal
                Neuron
                Neuron
                Elsevier BV
                08966273
                April 2003
                April 2003
                : 38
                : 1
                : 79-88
                Article
                10.1016/S0896-6273(03)00196-X
                12691666
                801d0377-22e6-4381-a378-e3bca18328d2
                © 2003

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article