11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties, influence on tumor growth, and therapeutic implications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During tumorigenesis and development, participation of the tumor microenvironment is not negligible. As an important component in the tumor microenvironment, mesenchymal stem cells (MSCs) have been corroborated to mediate proliferation, metastasis, and drug resistance in many cancers, including osteosarcoma. What’s more, because of tumor site tropism, MSCs can be engineered to be loaded with therapeutic agents so that drugs can be precisely delivered to tumor lesions. In this review, we mainly discuss recent advances concerning the functions of MSCs in osteosarcoma and their possible clinical applications in the future.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms.

          We recently demonstrated that marrow stromal cells (MSCs) augment collateral remodeling through release of several cytokines such as VEGF and bFGF rather than via cell incorporation into new or remodeling vessels. The present study was designed to characterize the full spectrum of cytokine genes expressed by MSCs and to further examine the role of paracrine mechanisms that underpin their therapeutic potential. Normal human MSCs were cultured under normoxic or hypoxic conditions for 72 hours. The gene expression profile of the cells was determined using Affymetrix GeneChips representing 12 000 genes. A wide array of arteriogenic cytokine genes were expressed at baseline, and several were induced >1.5-fold by hypoxic stress. The gene array data were confirmed using ELISA assays and immunoblotting of the MSC conditioned media (MSC(CM)). MSC(CM) promoted in vitro proliferation and migration of endothelial cells in a dose-dependent manner; anti-VEGF and anti-FGF antibodies only partially attenuated these effects. Similarly, MSC(CM) promoted smooth muscle cell proliferation and migration in a dose-dependent manner. Using a murine hindlimb ischemia model, murine MSC(CM) enhanced collateral flow recovery and remodeling, improved limb function, reduced the incidence of autoamputation, and attenuated muscle atrophy compared with control media. These data indicate that paracrine signaling is an important mediator of bone marrow cell therapy in tissue ischemia, and that cell incorporation into vessels is not a prerequisite for their effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Concise Review: Cancer Cells, Cancer Stem Cells, and Mesenchymal Stem Cells: Influence in Cancer Development

            Abstract Tumors are composed of different types of cancer cells that contribute to tumor heterogeneity. Among these populations of cells, cancer stem cells (CSCs) play an important role in cancer initiation and progression. Like their stem cells counterpart, CSCs are also characterized by self‐renewal and the capacity to differentiate. A particular population of CSCs is constituted by mesenchymal stem cells (MSCs) that differentiate into cells of mesodermal characteristics. Several studies have reported the potential pro‐or anti‐tumorigenic influence of MSCs on tumor initiation and progression. In fact, MSCs are recruited to the site of wound healing to repair damaged tissues, an event that is also associated with tumorigenesis. In other cases, resident or migrating MSCs can favor tumor angiogenesis and increase tumor aggressiveness. This interplay between MSCs and cancer cells is fundamental for cancerogenesis, progression, and metastasis. Therefore, an interesting topic is the relationship between cancer cells, CSCs, and MSCs, since contrasting reports about their respective influences have been reported. In this review, we discuss recent findings related to conflicting results on the influence of normal and CSCs in cancer development. The understanding of the role of MSCs in cancer is also important in cancer management. Stem Cells Translational Medicine 2017;6:2115–2125
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis.

              Recent reports indicated that vascular remodeling and angiogenesis are promoted by conditioned medium from the cells referred to as multipotent stromal cells (MSCs). However, the molecular events triggered by MSC-conditioned medium (CdM) were not defined. We examined the effects of CdM from human MSCs on cultures of primary human aortic endothelial cells (HAECs). The CdM inhibited hypoxia-induced apoptosis and cell death of HAECs. It also promoted tube formation by HAECs in an assay in vitro. Conditioned medium from multipotent stromal cells incubated under hypoxic conditions in serum-free endothelial basal medium for 2 days (CdM(Hyp)) from hypoxic culture of MSCs was more effective than conditioned medium from MSCs incubated under normoxic conditions in serum-free endothelial basal medium for 2 days from normoxic cultures of MSCs, an observation in part explained by its higher content of antiapoptotic and angiogenic factors, such as interleukin (IL)-6, vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein (MCP)-1. The effects of CdM(Hyp) on hypoxic HAECs were partially duplicated by the addition of IL-6 in a dose-dependent manner; however, anti-IL-6, anti-MCP-1, and anti-VEGF blocking antibodies added independently did not attenuate the effects. Also, addition of CdM(Hyp) activated the PI3K-Akt pathway; the levels of p-Akt and several of its downstream targets were increased by CdM(Hyp), and both the increase in p-Akt and the increase in angiogenesis were blocked by an inhibitor of PI3K-Akt or by expression of a dominant negative gene for PI3K. CdM(Hyp) also increased the levels of p-extracellular signal-regulated kinase (ERK), but there was a minimal effect on p-signal transducer and activator of transcription-3, and an inhibitor of the ERK1/2 pathway had no effect on hypoxia-induced apoptosis of the HAECs. The results are consistent with suggestions that administration of MSCs or factors secreted by MSCs may provide a therapeutic method of decreasing apoptosis and enhancing angiogenesis.
                Bookmark

                Author and article information

                Contributors
                +86-15345116526 , 860910201@qq.com
                +86-15216637389 , gangyang_wang@163.com
                +86-18317005332 , crlrisa@163.com
                +86-13817651474 , yhua@shsmu.edu.cn
                +86-13901832868 , czd856@vip.163.com
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                31 January 2018
                31 January 2018
                2018
                : 9
                : 22
                Affiliations
                Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road Shanghai, Shanghai, China
                Article
                780
                10.1186/s13287-018-0780-x
                5793392
                29386041
                8026c274-d36f-4207-8211-c40dd6f44a1c
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81202115
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2018

                Molecular medicine
                mscs,osteosarcoma,metastasis,drug resistance,clinical applications
                Molecular medicine
                mscs, osteosarcoma, metastasis, drug resistance, clinical applications

                Comments

                Comment on this article