85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genes in prokaryotic genomes are often arranged into clusters and co-transcribed into polycistronic RNAs. Isolated examples of polycistronic RNAs were also reported in some higher eukaryotes but their presence was generally considered rare. Here we developed a long-read sequencing strategy to identify polycistronic transcripts in several mushroom forming fungal species including Plicaturopsis crispa, Phanerochaete chrysosporium, Trametes versicolor, and Gloeophyllum trabeum. We found genome-wide prevalence of polycistronic transcription in these Agaricomycetes, involving up to 8% of the transcribed genes. Unlike polycistronic mRNAs in prokaryotes, these co-transcribed genes are also independently transcribed. We show that polycistronic transcription may interfere with expression of the downstream tandem gene. Further comparative genomic analysis indicates that polycistronic transcription is conserved among a wide range of mushroom forming fungi. In summary, our study revealed, for the first time, the genome prevalence of polycistronic transcription in a phylogenetic range of higher fungi. Furthermore, we systematically show that our long-read sequencing approach and combined bioinformatics pipeline is a generic powerful tool for precise characterization of complex transcriptomes that enables identification of mRNA isoforms not recovered via short-read assembly.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          The transcriptional landscape of the yeast genome defined by RNA sequencing.

          The identification of untranslated regions, introns, and coding regions within an organism remains challenging. We developed a quantitative sequencing-based method called RNA-Seq for mapping transcribed regions, in which complementary DNA fragments are subjected to high-throughput sequencing and mapped to the genome. We applied RNA-Seq to generate a high-resolution transcriptome map of the yeast genome and demonstrated that most (74.5%) of the nonrepetitive sequence of the yeast genome is transcribed. We confirmed many known and predicted introns and demonstrated that others are not actively used. Alternative initiation codons and upstream open reading frames also were identified for many yeast genes. We also found unexpected 3'-end heterogeneity and the presence of many overlapping genes. These results indicate that the yeast transcriptome is more complex than previously appreciated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Next-generation transcriptome assembly.

            Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalogue of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies - along with some perspectives on transcriptome assembly in the near future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Understanding alternative splicing: towards a cellular code.

              In violation of the 'one gene, one polypeptide' rule, alternative splicing allows individual genes to produce multiple protein isoforms - thereby playing a central part in generating complex proteomes. Alternative splicing also has a largely hidden function in quantitative gene control, by targeting RNAs for nonsense-mediated decay. Traditional gene-by-gene investigations of alternative splicing mechanisms are now being complemented by global approaches. These promise to reveal details of the nature and operation of cellular codes that are constituted by combinations of regulatory elements in pre-mRNA substrates and by cellular complements of splicing regulators, which together determine regulated splicing pathways.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                15 July 2015
                2015
                : 10
                : 7
                : e0132628
                Affiliations
                [1 ]Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
                [2 ]Pacific Biosciences, Menlo Park, California, United States of America
                [3 ]Department of Bioproducts & Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, United States of America
                [4 ]Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
                [5 ]School of Natural Sciences, University of California at Merced, Merced, California, United States of America
                Albert Einsten College of Medicine, UNITED STATES
                Author notes

                Competing Interests: Co-authors ET and JU are employed by Pacific Bioscience. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: ZW FC. Performed the experiments: ZZ JU. Analyzed the data: SPG ET AS JZ DK XM. Wrote the paper: SPG ET IVG MF JSS ZW. Designed the software: ET.

                [¤]

                Current Address: Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America

                Article
                PONE-D-15-13213
                10.1371/journal.pone.0132628
                4503453
                26177194
                8029a142-65bc-4f1a-9f1c-2d28681b72c7
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 26 March 2015
                : 16 June 2015
                Page count
                Figures: 4, Tables: 1, Pages: 15
                Funding
                The work was conducted by the U.S. Department of Energy Joint Genome Institute and supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Pacific Biosciences provided support in the form of salaries for authors ET and JU, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the 'author contributions' section.
                Categories
                Research Article
                Custom metadata
                The ToFU pipeline is released under the Standard PacBio Open Source License and has become an integrated module for the PacBio SMRTAnalysis tool suite (version 2.2 and up). The standalone version is available at: https://github.com/PacificBiosciences/cDNA_primer. All RNA-Seq data have been submitted to NCBI, under the BioProject ID: PRJNA261247.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article