Blog
About

2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease-Associated Abdominal Aortic Aneurysm.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kawasaki disease (KD) is the most common cause of acquired cardiac disease in US children. In addition to coronary artery abnormalities and aneurysms, it can be associated with systemic arterial aneurysms. We evaluated the development of systemic arterial dilatation and aneurysms, including abdominal aortic aneurysm (AAA) in the Lactobacillus casei cell-wall extract (LCWE)-induced KD vasculitis mouse model.

          Related collections

          Author and article information

          Journal
          Arterioscler. Thromb. Vasc. Biol.
          Arteriosclerosis, thrombosis, and vascular biology
          Ovid Technologies (Wolters Kluwer Health)
          1524-4636
          1079-5642
          May 2016
          : 36
          : 5
          Affiliations
          [1 ] From the Division of Infectious Diseases and Immunology, Department of Biomedical Sciences and Pediatrics (D.W., T.R.C., M.N.R., Y.L., S.C., K.S., M.A.), Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences (T.R.C., S.C., K.S., M.A.), Biomedical Imaging Research Institute, Department of Biomedical Sciences (S.W., D.L.), and Division of Cardiology, Oppenheimer Atherosclerosis Research Center Cedars-Sinai Heart Institute (P.K.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (Y.K.); Regeneron Pharmaceuticals, Tarrytown, NY (W.F., Y.B.); Pediatric Rheumatology, Hospital for Special Surgery and Weill Medical College of Cornell University, New York, NY (T.L.); Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.C.F.); Departments of Pediatrics (H.M.H.) and Medicine (H.M.H.), University of California, San Diego, La Jolla; and Department of Pediatrics, Rady Children's Hospital, San Diego, CA (H.M.H.).
          [2 ] From the Division of Infectious Diseases and Immunology, Department of Biomedical Sciences and Pediatrics (D.W., T.R.C., M.N.R., Y.L., S.C., K.S., M.A.), Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences (T.R.C., S.C., K.S., M.A.), Biomedical Imaging Research Institute, Department of Biomedical Sciences (S.W., D.L.), and Division of Cardiology, Oppenheimer Atherosclerosis Research Center Cedars-Sinai Heart Institute (P.K.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (Y.K.); Regeneron Pharmaceuticals, Tarrytown, NY (W.F., Y.B.); Pediatric Rheumatology, Hospital for Special Surgery and Weill Medical College of Cornell University, New York, NY (T.L.); Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.C.F.); Departments of Pediatrics (H.M.H.) and Medicine (H.M.H.), University of California, San Diego, La Jolla; and Department of Pediatrics, Rady Children's Hospital, San Diego, CA (H.M.H.). moshe.arditi@cshs.org.
          Article
          ATVBAHA.115.307072 NIHMS763113
          10.1161/ATVBAHA.115.307072
          4850105
          26941015

          Comments

          Comment on this article