10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sensitivity of the FPG protein towards alkylation damage in the comet assay.

      Toxicology Letters
      Alkylation, Animals, Cells, Cultured, Comet Assay, methods, Cricetinae, DNA Damage, DNA-Formamidopyrimidine Glycosylase, pharmacology, Humans, Hydrogen-Ion Concentration, Oxidation-Reduction, Sensitivity and Specificity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The comet assay (single cell gel electrophoresis) is widely used for the evaluation of DNA-damaging effects in genotoxicity testing and population monitoring. In its standard version at pH >13, DNA double strand breaks (DSB), DNA single strand breaks (SSB) and alkali-labile sites (ALS) lead to increased DNA migration. At reduced pH (12.5-12.1) the expression of ALS as SSB can be eliminated and the effect of SSB only can be identified. Specific endonucleases have been used to characterize specific classes of DNA damage. The formamido pyrimidine glycosylase (FPG) protein has been used to assess oxidative DNA base damage because it detects 8-OH guanine and other oxidatively damaged purines. Here, we show that the FPG protein also detects alkylation damage with high sensitivity in the comet assay. Human whole blood, isolated lymphocytes and V79 cells were treated with alkylating agents and post-incubated with FPG. FPG strongly enhanced MMS- and EMS-induced DNA damage but had no significant effect on ENU-induced DNA damage, indicating that the amount of N-7 guanine alkylation is responsible for the observed effect. Reducing the pH during alkali unwinding and electrophoresis to 12.5 to avoid the contribution of ALS to the comet assay effects, strongly decreased the sensitivity of the comet assay with and without FPG treatment and prevented DNA migration. We conclude that enhanced DNA effects in the comet assay by FPG after exposure to genotoxins with unknown mode of action should not directly be regarded as evidence for the presence of oxidative damage. Furthermore, reducing the pH leads to a considerable loss in sensitivity and should not be used in biomonitoring and other applications which require a sensitive protocol.

          Related collections

          Author and article information

          Comments

          Comment on this article