+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      α-Aminoadipic acid protects against retinal disruption through attenuating Müller cell gliosis in a rat model of acute ocular hypertension

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Ocular hypertension is an important risk factor for glaucoma. The purpose of this study was to investigate the gliotoxic effects of α-aminoadipic acid (AAA) in a rat model of AOH and its underlying mechanisms.

          Materials and methods

          In the rat model of acute ocular hypertension (AOH), intraocular pressure was increased to 110 mmHg for 60 minutes. Animals were divided into four groups: sham operation (Ctrl), AOH, AOH + phosphate-buffered saline (PBS), and AOH + AAA. Cell apoptosis in the ganglion cell layer was detected with the terminal deoxynucleotidyl transferase-mediated uridine 5′-triphosphate-biotin nick end labeling (TUNEL) assay, and retinal ganglion cells (RGCs) immunostained with Thy-1 were counted. Müller cell activation was detected using immunostaining with glutamine synthetase and glial fibrillary acidic protein. Tumor necrosis factor-α (TNF-α) was examined using Western blot.


          In the rat model of AOH, cell apoptosis was induced in the ganglion cell layer and the number of RGCs was decreased. Müller cell gliosis in the retinas of rats was induced, and retinal protein levels of TNF-α were increased. Intravitreal treatment of AAA versus PBS control attenuated these retinal abnormalities to show protective effects in the rat model of AOH.


          In the retinas of the rat model of AOH, AAA treatment attenuated retinal apoptosis in the ganglion cell layer and preserved the number of RGCs, likely through the attenuation of Müller cell gliosis and suppression of TNF-α induction. Our observations suggest that AAA might be a potential therapeutic target in glaucoma.

          Related collections

          Most cited references 39

          • Record: found
          • Abstract: found
          • Article: not found

          New functions of Müller cells.

          Müller cells, the major type of glial cells in the retina, are responsible for the homeostatic and metabolic support of retinal neurons. By mediating transcellular ion, water, and bicarbonate transport, Müller cells control the composition of the extracellular space fluid. Müller cells provide trophic and anti-oxidative support of photoreceptors and neurons and regulate the tightness of the blood-retinal barrier. By the uptake of glutamate, Müller cells are more directly involved in the regulation of the synaptic activity in the inner retina. This review gives a survey of recently discoved new functions of Müller cells. Müller cells are living optical fibers that guide light through the inner retinal tissue. Thereby they enhance the signal/noise ratio by minimizing intraretinal light scattering and conserve the spatial distribution of light patterns in the propagating image. Müller cells act as soft, compliant embedding for neurons, protecting them in case of mechanical trauma, and also as soft substrate required for neurite growth and neuronal plasticity. Müller cells release neuroactive signaling molecules which modulate neuronal activity, are implicated in the mediation of neurovascular coupling, and mediate the homeostasis of the extracellular space volume under hypoosmotic conditions which are a characteristic of intense neuronal activity. Under pathological conditions, a subset of Müller cells may differentiate to neural progenitor/stem cells which regenerate lost photoreceptors and neurons. Increasing knowledge of Müller cell function and responses in the normal and diseased retina will have great impact for the development of new therapeutic approaches for retinal diseases. Copyright © 2013 Wiley Periodicals, Inc.
            • Record: found
            • Abstract: found
            • Article: not found

            Cerebrospinal fluid pressure in glaucoma: a prospective study.

            To assess whether a low cerebrospinal fluid pressure (CSF-P) is associated with open-angle glaucoma in eyes with normal intraocular pressure (IOP). Prospective, interventional study. The study included 43 patients with open-angle glaucoma (14 with a normal IOP, and 29 with an elevated IOP) and 71 subjects without glaucoma. All patients underwent standardized ophthalmologic and neurologic examinations and measurement of lumbar CSF-P. Cerebrospinal fluid pressure and IOP. Lumbar CSF-P was significantly (P<0.001) lower in the normal IOP glaucoma group (9.5+/-2.2 mmHg) than in the high IOP glaucoma group (11.7+/-2.7 mmHg) or the control group (12.9+/-1.9 mmHg). The trans-lamina cribrosa pressure difference (IOP minus CSF-P) was significantly (P<0.001) higher in the normal IOP glaucoma group (6.6+/-3.6 mmHg) and the high-IOP glaucoma group (12.5+/-4.1 mmHg) than in the control group (1.4+/-1.7 mmHg). The extent of glaucomatous visual field loss was negatively correlated with the height of the CSF-P and positively correlated with the trans-lamina cribrosa pressure difference. In the control group, CSF-P was significantly correlated with both systolic blood pressure (P = 0.04) and IOP (P<0.001). The trans-lamina cribrosa pressure difference was not significantly associated with blood pressure (P = 0.97). In open-angle glaucoma with normal IOP, CSF-P is abnormally low, leading to an abnormally high trans-lamina cribrosa pressure difference. Pathogenetically, a low CSF-P in normal-IOP glaucoma may be similar to a high IOP in high-IOP glaucoma. Consequently, the glaucomatous visual field defect is positively correlated with the trans-lamina cribrosa pressure difference and inversely correlated with the CSF-P. In nonglaucomatous subjects, CSF-P, blood pressure, and IOP are significantly associated with each other. Copyright (c) 2010 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma.

              Glaucoma is a widespread ocular disease characterized by a progressive loss of retinal ganglion cells (RGCs). Previous studies suggest that the cytokine tumor necrosis factor-alpha (TNF-alpha) may contribute to the disease process, although its role in vivo and its mechanism of action are unclear. To investigate pathophysiological mechanisms in glaucoma, we induced ocular hypertension (OH) in mice by angle closure via laser irradiation. This treatment resulted in a rapid upregulation of TNF-alpha, followed sequentially by microglial activation, loss of optic nerve oligodendrocytes, and delayed loss of RGCs. Intravitreal TNF-alpha injections in normal mice mimicked these effects. Conversely, an anti-TNF-alpha-neutralizing antibody or deleting the genes encoding TNF-alpha or its receptor, TNFR2, blocked the deleterious effects of OH. Deleting the CD11b/CD18 gene prevented microglial activation and also blocked the pathophysiological effects of OH. Thus TNF-alpha provides an essential, although indirect, link between OH and RGC loss in vivo. Blocking TNF-alpha signaling or inflammation, therefore, may be helpful in treating glaucoma.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                20 October 2016
                : 10
                : 3449-3457
                [1 ]Department of Ophthalmology, Beijing Friendship Hospital
                [2 ]Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
                [3 ]Ningbo College of Health Sciences, Ningbo
                [4 ]Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing
                [5 ]Beijing Stomatological Hospital, Capital Medical University, Beijing, People’s Republic of China
                [6 ]University of California, Irvine School of Medicine, Irvine, CA, USA
                Author notes
                Correspondence: Junfa Li, Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, 10 Waixitoutiao, Youanmen, Fengtai District, Beijing 100069, People’s Republic of China, Tel +86 10 8395 0061, Email junfali@ 123456ccmu.edu.cn
                Yanling Wang, Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, 95 Yong’an Road, Xicheng District, Beijing 100050, People’s Republic of China, Email wangyanling16105@ 123456163.com

                These authors contributed equally to this work

                © 2016 Wang et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research


                Comment on this article