1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exosome-Derived MiRNAs as Biomarkers of the Development and Progression of Intracranial Aneurysms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim: Exosome-derived microRNAs (miRNAs) are potential diagnostic biomarkers. However, little is known about their effectiveness as diagnostic biomarkers of intracranial aneurysms (IAs). This study aimed to explore miRNA levels in plasma exosomes of patients with IA to identify potential biomarkers that predict the development and progress of IA.

          Methods: A total of 69 patients with IA and 30 healthy controls (HC) were recruited, among whom 30 had unruptured IA (UA), and 39 had ruptured IA (RA). The miRNA expression profiles of plasma exosomes in 12 IA patients (4 UA and 8 RA) and 4 HC were determined using next-generation sequencing. In addition, significantly differentially expressed miRNAs were further analyzed by Quantitative Real-Time PCR (qRT-PCR) in a validation cohort of 99 subjects.

          Results: From the sequencing analysis, 181 miRNAs were identified to be differently ( p < 0.05) expressed. Of these, 9 miRNAs were up-regulated, and 20 were down-regulated in patients with UA compared with HC. Also, 21 were up-regulated, and 10 were down-regulated in patients with RA compared with HC. In addition, compared with UA, 92 miRNAs were up-regulated in RA, whereas 29 were down-regulated. Furthermore, qRT-PCR analysis confirmed that miR-145-5p and miR-29a-3p were up-regulated in IA samples. To distinguish IA patients from controls, the area under the receiver operating characteristic curve was 0.791 for miR-29a-3p, while that of miRNA-145-5p was 0.773 in terms of discriminating whether the aneurysm was ruptured.

          Conclusions: Circulating exosomal miRNAs can serve as biomarkers of the development and progression of IA.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          edgeR: a Bioconductor package for differential expression analysis of digital gene expression data

          Summary: It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org). Contact: mrobinson@wehi.edu.au
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA profiling: approaches and considerations.

            MicroRNAs (miRNAs) are small RNAs that post-transcriptionally regulate the expression of thousands of genes in a broad range of organisms in both normal physiological contexts and in disease contexts. miRNA expression profiling is gaining popularity because miRNAs, as key regulators in gene expression networks, can influence many biological processes and also show promise as biomarkers for disease. Technological advances have spawned a multitude of platforms for miRNA profiling, and an understanding of the strengths and pitfalls of different approaches can aid in their effective use. Here, we review the major considerations for carrying out and interpreting results of miRNA-profiling studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circulating microRNAs: Association with disease and potential use as biomarkers.

              The control of gene expression by microRNAs influences many cellular processes and has been implicated in the control of many (patho)physiological states. Recently, microRNAs have been detected in serum and plasma, and circulating microRNA profiles have now been associated with a range of different tumour types, diseases such as stroke and heart disease, as well as altered physiological states such as pregnancy. Here we review the disease-specific profiles of circulating microRNAs, and the methodologies used for their detection and quantification. We also discuss possible functions of circulating microRNAs and their potential as non-invasive biomarkers. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                J Atheroscler Thromb
                J. Atheroscler. Thromb
                jat
                jat
                Journal of Atherosclerosis and Thrombosis
                Japan Atherosclerosis Society
                1340-3478
                1880-3873
                1 June 2020
                : 27
                : 6
                : 545-610
                Affiliations
                Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Guangxi, China
                Author notes

                Bao Liao and Meng-xiao Zhou contributed equally to this work.

                Address for correspondence: Chao Qin, Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, China. E-mail: mdqc2019@ 123456126.com
                Article
                10.5551/jat.51102
                7355105
                31597886
                805d9728-7ac0-4208-94b8-eafa24ed18b0
                2020 Japan Atherosclerosis Society

                This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License. http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 27 May 2019
                : 9 September 2019
                Page count
                Figures: 4, Tables: 11, References: 28, Pages: 66
                Categories
                Original Article

                intracranial aneurysm,subarachnoid hemorrhage,microrna,exosome,mir-145-5p,mir-29a-3p

                Comments

                Comment on this article