14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Upregulated microRNA let-7a accelerates apoptosis and inhibits proliferation in uterine junctional zone smooth muscle cells in adenomyosis under conditions of a normal activated hippo-YAP1 axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Let-7a is a small non-coding RNA that has been found to take part in cell proliferation and apoptosis. The hippo-YAP1 axis, known as a tumour suppressor pathway, also plays an important role in cell proliferation and apoptosis. YAP1, TAZ, and phospho-YAP1 play key roles in actions of the hippo-YAP1 axis. Adenomyosis (ADS) is a proliferative disease leading to a large uterus in patients with prolonged illness. Abnormal proliferation of smooth muscle cells (SMCs) in the uterine endometrial-myometrial junctional zone (JZ) is an important reason for developing ADS. This study aimed to explore the expression levels of let-7a and components of the hippo-YAP1 axis in SMCs in the uterine endometrial-myometrial JZ in ADS and to explore the roles of let-7a and the hippo-YAP1 axis of JZ SMC proliferation and apoptosis in ADS.

          Methods

          We collected JZ tissues for the primary culture of SMCs from 25 women diagnosed with ADS and 27 women without ADS. We used quantitative real-time polymerase chain reaction and western blotting to measure the mRNA and protein expression levels of let-7a, YAP1, TAZ, and phospho-YAP1 in ADS JZ SMCs. A CCK-8 assay and flow cytometry analysis of apoptosis were utilized to test the proliferation and apoptosis of JZ SMCs. The let-7a overexpression lentiviral vector GV280 was used to increase the expression level of let-7a. We added verteporfin to block the phosphorylation of components of the hippo-YAP1 axis.

          Results

          We found that the let-7a level was decreased, while the YAP1 and TAZ levels were increased in ADS JZ SMCs. Upregulated let-7a affected the expression levels of components of the hippo-YAP1 axis, accelerated apoptosis, and inhibited proliferation in JZ SMCs. Furthermore, accumulated YAP1 led to increasing proliferation of JZ SMCs after verteporfin treatment to block the phosphorylation of components of the hippo-YAP1 axis. If components of the hippo-YAP1 axis were unphosphorylated, upregulated let-7a could not inhibit the proliferation of ADS JZ SMCs. Upregulated let-7a could not activate the hippo-YAP1 axis in verteporfin treatment.

          Conclusions

          Our findings suggest that the let-7a and hippo-YAP1 axis may act as important regulators of JZ SMCs proliferation, and upregulated let-7a may be an effective method to treat ADS.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Analyzing real-time PCR data by the comparative C(T) method.

          Two different methods of presenting quantitative gene expression exist: absolute and relative quantification. Absolute quantification calculates the copy number of the gene usually by relating the PCR signal to a standard curve. Relative gene expression presents the data of the gene of interest relative to some calibrator or internal control gene. A widely used method to present relative gene expression is the comparative C(T) method also referred to as the 2 (-DeltaDeltaC(T)) method. This protocol provides an overview of the comparative C(T) method for quantitative gene expression studies. Also presented here are various examples to present quantitative gene expression data using this method.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control.

            The Hippo pathway plays a key role in organ size control by regulating cell proliferation and apoptosis in Drosophila. Although recent genetic studies have shown that the Hippo pathway is regulated by the NF2 and Fat tumor suppressors, the physiological regulations of this pathway are unknown. Here we show that in mammalian cells, the transcription coactivator YAP (Yes-associated protein), is inhibited by cell density via the Hippo pathway. Phosphorylation by the Lats tumor suppressor kinase leads to cytoplasmic translocation and inactivation of the YAP oncoprotein. Furthermore, attenuation of this phosphorylation of YAP or Yorkie (Yki), the Drosophila homolog of YAP, potentiates their growth-promoting function in vivo. Moreover, YAP overexpression regulates gene expression in a manner opposite to cell density, and is able to overcome cell contact inhibition. Inhibition of YAP function restores contact inhibition in a human cancer cell line bearing deletion of Salvador (Sav), a Hippo pathway component. Interestingly, we observed that YAP protein is elevated and nuclear localized in some human liver and prostate cancers. Our observations demonstrate that YAP plays a key role in the Hippo pathway to control cell proliferation in response to cell contact.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elucidation of a universal size-control mechanism in Drosophila and mammals.

              Coordination of cell proliferation and cell death is essential to attain proper organ size during development and for maintaining tissue homeostasis throughout postnatal life. In Drosophila, these two processes are orchestrated by the Hippo kinase cascade, a growth-suppressive pathway that ultimately antagonizes the transcriptional coactivator Yorkie (Yki). Here we demonstrate that a single phosphorylation site in Yki mediates the growth-suppressive output of the Hippo pathway. Hippo-mediated phosphorylation inactivates Yki by excluding it from the nucleus, whereas loss of Hippo signaling leads to nuclear accumulation and therefore increased Yki activity. We further delineate a mammalian Hippo signaling pathway that culminates in the phosphorylation of YAP, the mammalian homolog of Yki. Using a conditional YAP transgenic mouse model, we demonstrate that the mammalian Hippo pathway is a potent regulator of organ size, and that its dysregulation leads to tumorigenesis. These results uncover a universal size-control mechanism in metazoan.
                Bookmark

                Author and article information

                Contributors
                duanhua@ccmu.edu.cn
                Journal
                Reprod Biol Endocrinol
                Reprod Biol Endocrinol
                Reproductive Biology and Endocrinology : RB&E
                BioMed Central (London )
                1477-7827
                3 June 2021
                3 June 2021
                2021
                : 19
                : 81
                Affiliations
                GRID grid.24696.3f, ISNI 0000 0004 0369 153X, Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, , Capital Medical University, ; 17 Qi Helou Road, Dong Cheng, Beijing, 100006 P.R. China
                Article
                753
                10.1186/s12958-021-00753-w
                8173847
                34082774
                805ef439-639e-4990-bc60-851f52c56e6a
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 25 February 2021
                : 27 April 2021
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81571412
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Human biology
                adenomyosis,let-7a,apoptosis,proliferation,junctional zone,smooth muscle cells,hippo-yap1
                Human biology
                adenomyosis, let-7a, apoptosis, proliferation, junctional zone, smooth muscle cells, hippo-yap1

                Comments

                Comment on this article