45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Orexin/Hypocretin: A Neuropeptide at the Interface of Sleep, Energy Homeostasis, and Reward System

      ,
      Pharmacological Reviews
      American Society for Pharmacology & Experimental Therapeutics (ASPET)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies have implicated the orexin system as a critical regulator of sleep/wake states as well as feeding behavior and reward processes. Orexin deficiency results in narcolepsy in humans, dogs, and rodents, suggesting that the orexin system is particularly important for maintenance of wakefulness. In addition, orexin deficiency also cause abnormalities in energy homeostasis and reward systems. Orexin activates waking active monoaminergic and cholinergic neurons in the hypothalamus and brainstem regions to maintain a long, consolidated waking period. Orexin neurons receive abundant input from the limbic system. Orexin neurons also have reciprocal links with the hypothalamic arcuate nucleus, which regulates feeding. Moreover, the responsiveness of orexin neurons to peripheral metabolic cues, such as leptin and glucose, suggest that these neurons have important role as a link between the energy homeostasis and vigilance states. Orexin neurons also have a link with the dopaminergic reward system in the ventral tegmental nucleus. These findings suggest that the orexin system interacts with systems that regulate emotion, reward, and energy homeostasis to maintain proper vigilance states. Therefore, this system may be a potentially important therapeutic target for treatment of sleep disorder, obesity, emotional stress, and addiction.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: not found
          • Article: not found

          Orexins and Orexin Receptors: A Family of Hypothalamic Neuropeptides and G Protein-Coupled Receptors that Regulate Feeding Behavior

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains.

              We explored the role of hypocretins in human narcolepsy through histopathology of six narcolepsy brains and mutation screening of Hcrt, Hcrtr1 and Hcrtr2 in 74 patients of various human leukocyte antigen and family history status. One Hcrt mutation, impairing peptide trafficking and processing, was found in a single case with early onset narcolepsy. In situ hybridization of the perifornical area and peptide radioimmunoassays indicated global loss of hypocretins, without gliosis or signs of inflammation in all human cases examined. Although hypocretin loci do not contribute significantly to genetic predisposition, most cases of human narcolepsy are associated with a deficient hypocretin system.
                Bookmark

                Author and article information

                Journal
                Pharmacological Reviews
                Pharmacol Rev
                American Society for Pharmacology & Experimental Therapeutics (ASPET)
                0031-6997
                1521-0081
                June 23 2009
                June 2009
                June 2009
                June 23 2009
                : 61
                : 2
                : 162-176
                Article
                10.1124/pr.109.001321
                19549926
                80608684-b953-4780-ba8e-8c49d8bfa74c
                © 2009
                History

                Comments

                Comment on this article