4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect of Ingesting Carbohydrate and Proteins on Athletic Performance: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endurance athletes participating in sporting events may be required to complete multiple training sessions a day or on successive days with a limited recovery time. Nutritional interventions that enhance the restoration of endogenous fuel stores (e.g., liver and muscle glycogen) and improve muscle damage repair have received a lot of attention. The purpose of this review is to investigate the effect of ingesting carbohydrate (CHO) and protein (PRO) on athletic performance. Studies were identified by searching the electronic databases PubMed and EMBASE. Random-effects meta-analyses were conducted to examine the intervention efficacy. A total of 30 randomized controlled trials (RCT), comprising 43 trials and 326 participants in total, were included in this review. The meta-analysis showed an overall significant effect in Time-To-Exhaustion (TTE) and Time-Trial (TT) performance, when ingesting carbohydrates and proteins (CHO-PRO) compared to CHO-only ( p = 0.03 and p = 0.0007, respectively). A subgroup analysis demonstrated a significant effect in TTE by ingesting CHO-PRO compared to CHO, when supplements were provided during and/or following an exercise bout. CHO-PRO significantly improved TTE compared to CHO-only, when a long-term recovery (i.e., ≥8 h) was implemented ( p = 0.001). However, no effect was found when the recovery time was short-term (i.e., ≤8 h). No significant effect was observed when CHO-PRO and CHO-only supplements were isocaloric. However, a significant improved TTE was evident with CHO-PRO compared to CHO-only, when the supplements were matched for carbohydrate content ( p < 0.00001). In conclusion, co-ingesting carbohydrates and proteins appears to enhance TTE and TT performance compared to CHO-only and presents a compelling alternate feeding strategy for athletes.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle.

          Glucose is stored as glycogen in skeletal muscle. The importance of glycogen as a fuel during exercise has been recognized since the 1960s; however, little is known about the precise mechanism that relates skeletal muscle glycogen to muscle fatigue. We show that low muscle glycogen is associated with an impairment of muscle ability to release Ca(2+), which is an important signal in the muscle activation. Thus, depletion of glycogen during prolonged, exhausting exercise may contribute to muscle fatigue by causing decreased Ca(2+) release inside the muscle. These data provide indications of a signal that links energy utilization, i.e. muscle contraction, with the energy content in the muscle, thereby inhibiting a detrimental depletion of the muscle energy store.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate.

            Protein induces an increase in insulin concentrations when ingested in combination with carbohydrate. Increases in plasma insulin concentrations have been observed after the infusion of free amino acids. However, the insulinotropic properties of different amino acids or protein (hydrolysates) when co-ingested with carbohydrate have not been investigated. The aim of this study was to define an amino acid and protein (hydrolysate) mixture with a maximal insulinotropic effect when co-ingested with carbohydrate. Eight healthy, nonobese male subjects visited our laboratory, after an overnight fast, on 10 occasions on which different beverage compositions were tested for 2 h. During those trials the subjects ingested 0.8 g*kg(-)(1)*h(-)(1) carbohydrate and 0.4 g*kg(-)(1)*h(-)(1) of an amino acid and protein (hydrolysate) mixture. A strong initial increase in plasma glucose and insulin concentrations was observed in all trials, after which large differences in insulin response between drinks became apparent. After we expressed the insulin response as area under the curve during the second hour, ingestion of the drinks containing free leucine, phenylalanine, and arginine and the drinks with free leucine, phenylalanine, and wheat protein hydrolysate were followed by the largest insulin response (101% and 103% greater, respectively, than with the carbohydrate-only drink; P < 0.05). Insulin responses are positively correlated with plasma leucine, phenylalanine, and tyrosine concentrations. A mixture of wheat protein hydrolysate, free leucine, phenylalanine, and carbohydrate can be applied as a nutritional supplement to strongly elevate insulin concentrations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nutritional strategies to promote postexercise recovery.

              During postexercise recovery, optimal nutritional intake is important to replenish endogenous substrate stores and to facilitate muscle-damage repair and reconditioning. After exhaustive endurance-type exercise, muscle glycogen repletion forms the most important factor determining the time needed to recover. Postexercise carbohydrate (CHO) ingestion has been well established as the most important determinant of muscle glycogen synthesis. Coingestion of protein and/or amino acids does not seem to further increase muscle glycogensynthesis rates when CHO intake exceeds 1.2 g × kg⁻¹ × hr⁻¹. However, from a practical point of view it is not always feasible to ingest such large amounts of CHO. The combined ingestion of a small amount of protein (0.2-0.4 g × kg⁻¹ × hr⁻¹) with less CHO (0.8 g × kg⁻¹ × hr⁻¹) stimulates endogenous insulin release and results in similar muscle glycogen-repletion rates as the ingestion of 1.2 g × kg⁻¹ × hr⁻¹ CHO. Furthermore, postexercise protein and/or amino acid administration is warranted to stimulate muscle protein synthesis, inhibit protein breakdown, and allow net muscle protein accretion. The consumption of ~20 g intact protein, or an equivalent of ~9 g essential amino acids, has been reported to maximize muscle protein-synthesis rates during the first hours of postexercise recovery. Ingestion of such small amounts of dietary protein 5 or 6 times daily might support maximal muscle protein-synthesis rates throughout the day. Consuming CHO and protein during the early phases of recovery has been shown to positively affect subsequent exercise performance and could be of specific benefit for athletes involved in multiple training or competition sessions on the same or consecutive days.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                20 May 2020
                May 2020
                : 12
                : 5
                : 1483
                Affiliations
                [1 ]Department of Public Health, Section of Sport Science, Aarhus University, Dalgas Avenue 4, 8000 Aarhus, Denmark; lotte.lina.nielsen@ 123456gmail.com
                [2 ]Department of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; mntl@ 123456clin.au.dk
                Author notes
                [* ]Correspondence: per.bendix.jeppesen@ 123456clin.au.dk ; Tel.: +45-2815-1877
                Author information
                https://orcid.org/0000-0001-8042-7554
                Article
                nutrients-12-01483
                10.3390/nu12051483
                7284704
                32443678
                80652616-6301-4b0e-aae8-7bf6b0314b3c
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 06 April 2020
                : 11 May 2020
                Categories
                Review

                Nutrition & Dietetics
                sports nutrition,athletic performance,protein,carbohydrate,time-to-exhaustion,time-trial

                Comments

                Comment on this article