7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A continuously changing selective context on microbial communities associated with fish, from egg to fork

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fast increase of fish aquaculture production to meet consumer demands is accompanied by important ecological concerns such as disease outbreaks. Meanwhile, food waste is an important concern with fish products since they are highly perishable. Recent aquaculture and fish product microbiology, and more recently, microbiota research, paved the way to a highly integrated approach to understand complex relationships between host fish, product and their associated microbial communities at health/disease and preservation/spoilage frontiers. Microbial manipulation strategies are increasingly validated as promising tools either to replace or to complement traditional veterinary and preservation methods. In this review, we consider evolutionary forces driving fish microbiota assembly, in particular the changes in the selective context along the production chain. We summarize the current knowledge concerning factors governing assembly and dynamics of fish hosts and food microbial communities. Then, we discuss the current microbial community manipulation strategies from an evolutionary standpoint to provide a perspective on the potential for risks, conflict and opportunities. Finally, we conclude that to harness evolutionary forces in the development of sustainable microbiota manipulation applications in the fish industry, an integrated knowledge of the controlling abiotic and especially biotic factors is required.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: not found

          Stochastic and deterministic assembly processes in subsurface microbial communities.

          A major goal of microbial community ecology is to understand the forces that structure community composition. Deterministic selection by specific environmental factors is sometimes important, but in other cases stochastic or ecologically neutral processes dominate. Lacking is a unified conceptual framework aiming to understand why deterministic processes dominate in some contexts but not others. Here we work toward such a framework. By testing predictions derived from general ecological theory we aim to uncover factors that govern the relative influences of deterministic and stochastic processes. We couple spatiotemporal data on subsurface microbial communities and environmental parameters with metrics and null models of within and between community phylogenetic composition. Testing for phylogenetic signal in organismal niches showed that more closely related taxa have more similar habitat associations. Community phylogenetic analyses further showed that ecologically similar taxa coexist to a greater degree than expected by chance. Environmental filtering thus deterministically governs subsurface microbial community composition. More importantly, the influence of deterministic environmental filtering relative to stochastic factors was maximized at both ends of an environmental variation gradient. A stronger role of stochastic factors was, however, supported through analyses of phylogenetic temporal turnover. Although phylogenetic turnover was on average faster than expected, most pairwise comparisons were not themselves significantly non-random. The relative influence of deterministic environmental filtering over community dynamics was elevated, however, in the most temporally and spatially variable environments. Our results point to general rules governing the relative influences of stochastic and deterministic processes across micro- and macro-organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dietary modulation of the human colonic microbiota: updating the concept of prebiotics.

            Prebiotics are non-digestible (by the host) food ingredients that have a beneficial effect through their selective metabolism in the intestinal tract. Key to this is the specificity of microbial changes. The present paper reviews the concept in terms of three criteria: (a) resistance to gastric acidity, hydrolysis by mammalian enzymes and gastrointestinal absorption; (b) fermentation by intestinal microflora; (c) selective stimulation of the growth and/or activity of intestinal bacteria associated with health and wellbeing. The conclusion is that prebiotics that currently fulfil these three criteria are fructo-oligosaccharides, galacto-oligosaccharides and lactulose, although promise does exist with several other dietary carbohydrates. Given the range of food vehicles that may be fortified by prebiotics, their ability to confer positive microflora changes and the health aspects that may accrue, it is important that robust technologies to assay functionality are used. This would include a molecular-based approach to determine flora changes. The future use of prebiotics may allow species-level changes in the microbiota, an extrapolation into genera other than the bifidobacteria and lactobacilli, and allow preferential use in disease-prone areas of the body.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession.

              Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.
                Bookmark

                Author and article information

                Contributors
                Nicolas.derome@bio.ulaval.ca
                Journal
                Evol Appl
                Evol Appl
                10.1111/(ISSN)1752-4571
                EVA
                Evolutionary Applications
                John Wiley and Sons Inc. (Hoboken )
                1752-4571
                09 June 2020
                July 2020
                : 13
                : 6 , Louis Bernatchez’ 60th Anniversary ( doiID: 10.1111/eva.v13.6 )
                : 1298-1319
                Affiliations
                [ 1 ] Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec QC Canada
                [ 2 ] Département de Biologie Université Laval Québec QC Canada
                [ 3 ] Département des Sciences des aliments Institut sur la nutrition et les aliments fonctionnels (INAF) Université Laval Québec QC Canada
                Author notes
                [*] [* ] Correspondence

                Nicolas Derome, Département de Biologie, Pavillon Charles‐Eugène Marchand, bureau 1255, 1030 avenue de la Médecine, Université Laval, Québec, QC G1V 0A6, Canada.

                Email: Nicolas.derome@ 123456bio.ulaval.ca

                Author information
                https://orcid.org/0000-0002-2509-6104
                https://orcid.org/0000-0002-1405-7900
                Article
                EVA13027
                10.1111/eva.13027
                7359827
                32684960
                8069691c-7669-4ac5-96d6-b9db9e3d1ec6
                © 2020 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 November 2019
                : 13 May 2020
                : 14 May 2020
                Page count
                Figures: 1, Tables: 0, Pages: 22, Words: 20694
                Funding
                Funded by: Natural Sciences and Engineering Research Council of Canada , open-funder-registry 10.13039/501100000038;
                Award ID: 04771
                Award ID: 6333
                Categories
                Special Issue Review and Syntheses
                Special Issue Review and Syntheses
                Custom metadata
                2.0
                July 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.5 mode:remove_FC converted:14.07.2020

                Evolutionary Biology
                antimicrobial alternatives,aquaculture,biotic and abiotic factors,evolutionary forces,food microbiology,microbial interactions,microbiota

                Comments

                Comment on this article