36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Carbon catabolite repression in Thermoanaerobacterium saccharolyticum

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The thermophilic anaerobe Thermoanaerobacterium saccharolyticum is capable of directly fermenting xylan and the biomass-derived sugars glucose, cellobiose, xylose, mannose, galactose and arabinose. It has been metabolically engineered and developed as a biocatalyst for the production of ethanol.

          Results

          We report the initial characterization of the carbon catabolite repression system in this organism. We find that sugar metabolism in T. saccharolyticum is regulated by histidine-containing protein HPr. We describe a mutation in HPr, His15Asp, that leads to derepression of less-favored carbon source utilization.

          Conclusion

          Co-utilization of sugars can be achieved by mutation of HPr in T. saccharolyticum. Further manipulation of CCR in this organism will be instrumental in achieving complete and rapid conversion of all available sugars to ethanol.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          Transcriptional regulation by cAMP and its receptor protein.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Carbon catabolite control of the metabolic network in Bacillus subtilis.

            Y Fujita (2009)
            The histidine-containing protein (HPr) is the energy coupling protein of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system (PTS), which catalyzes the transport of carbohydrates in bacteria. In Bacillus subtilis and close relatives, global regulation of carbon catabolite control occurs on the binding of the complex of CcpA (catabolite control protein A) and P-Ser-HPr (seryl-phosphorylated form of HPr) to the catabolite responsive elements (cre) of the target operons, the constituent genes of which are roughly estimated to number 300. The complex of CcpA and P-Ser-HPr triggers the expression of several genes involved in the formation of acetate and acetoin, major extracellular products of B. subtilis grown on glucose. It also triggers the expression of an anabolic operon (ilv-leu) involved in the biosynthesis of branched-chain amino acids, which subsequently leads to cell propagation. On the other hand, this complex represses many genes and operons, which include an entrance gene for the TCA cycle (citZ), several transporter genes for TCA cycle-intermediates, some respiration genes, and many catabolic and anabolic genes involved in carbon, nitrogen, and phosphate metabolism, as well as for certain extracellular enzymes and secondary metabolites. Furthermore, these bacteria have CcpA-independent catabolite regulation systems, each of which involves a transcriptional repressor of CggR or CcpN. CggR and CcpN are derepressed under glycolytic and gluconeogenic growth conditions, and enhance glycolysis and gluconeogenesis respectively. Another CcpA-independent catabolite repression system involves P-His-HPr (histidyl-phosphorylated form of HPr). P-His-HPr phosphorylates and activates glycerol kinase, whose product is necessary for antitermination of the glycerol utilization operon through GlpP, the antiterminators (LicT and SacT, Y) of several operons for the utilization of less-preferred PTS-sugars, and some transcriptional activators such as LevR for the levan utilization operon. This phosphorylation is reduced due to the decreased level of P-His-HPr during active transport of a preferred PTS-carbohydrate such as glucose, resulting in catabolite repression of the target operons.Thus CcpA-dependent and independent networks for carbon metabolism play a major role in the coordinate regulation of catabolism and anabolism to ensure optimum cell propagation in the presence and the absence of a preferred PTS-carbohydrate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization.

              Carbon catabolite repression (CCR) in bacteria is generally regarded as a regulatory mechanism to ensure sequential utilization of carbohydrates. Selection of the carbon sources is mainly made at the level of carbohydrate-specific induction. Since virtually all carbohydrate catabolic genes or operons are regulated by specific control proteins and require inducers for high level expression, direct control of the activity of regulators or control of inducer formation is an efficient measure to keep them silent. By these mechanisms, bacteria are able to establish a hierarchy of sugar utilization. In addition to the control of induction processes by CCR, bacteria have developed global transcriptional regulation circuits, in which pleiotropic regulators are activated. These global control proteins, the catabolite gene activator protein (CAP), also known as cAMP receptor protein, in Escherichia coli or the catabolite control protein (CcpA) in Gram-positive bacteria with low GC content, act upon a large number of catabolic genes/operons. Since practically any carbon source is able to trigger global transcriptional control, expression of sugar utilization genes is restricted even in the sole presence of their cognate substrates. Consequently, CAP- or CcpA-dependent catabolite repression serves as an autoregulatory device to keep sugar utilization at a certain level rather than to establish preferential utilization of certain carbon sources. Together with other autoregulatory mechanisms that are not acting at the gene expression level, CCR helps bacteria to adjust sugar utilization to their metabolic capacities. Therefore, catabolic/metabolic balance would perhaps better describe the physiological role of this regulatory network than the term catabolite repression.
                Bookmark

                Author and article information

                Journal
                Biotechnol Biofuels
                Biotechnol Biofuels
                Biotechnology for Biofuels
                BioMed Central
                1754-6834
                2012
                26 November 2012
                : 5
                : 85
                Affiliations
                [1 ]Mascoma Corporation, 67 Etna Road, Suite 300, New Hampshire, 03766, Lebanon
                Article
                1754-6834-5-85
                10.1186/1754-6834-5-85
                3526391
                23181505
                807b057e-ad2e-4cad-9465-cdef3991cfaf
                Copyright ©2012 Tsakraklides et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 July 2012
                : 25 October 2012
                Categories
                Research

                Biotechnology
                deoxyglucose,thermophile,ethanol,catabolite repression,anaerobe,lignocellulose,hpr,glucose,arabinose
                Biotechnology
                deoxyglucose, thermophile, ethanol, catabolite repression, anaerobe, lignocellulose, hpr, glucose, arabinose

                Comments

                Comment on this article