Blog
About

36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Analysis of NopM, a Novel E3 Ubiquitin Ligase (NEL) Domain Effector of Rhizobium sp. Strain NGR234

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Type 3 effector proteins secreted via the bacterial type 3 secretion system (T3SS) are not only virulence factors of pathogenic bacteria, but also influence symbiotic interactions between nitrogen-fixing nodule bacteria (rhizobia) and leguminous host plants. In this study, we characterized NopM (nodulation outer protein M) of Rhizobium sp. strain NGR234, which shows sequence similarities with novel E3 ubiquitin ligase (NEL) domain effectors from the human pathogens Shigella flexneri and Salomonella enterica. NopM expressed in Escherichia coli, but not the non-functional mutant protein NopM-C338A, showed E3 ubiquitin ligase activity in vitro. In vivo, NopM, but not inactive NopM-C338A, promoted nodulation of the host plant Lablab purpureus by NGR234. When NopM was expressed in yeast, it inhibited mating pheromone signaling, a mitogen-activated protein (MAP) kinase pathway. When expressed in the plant Nicotiana benthamiana, NopM inhibited one part of the plant's defense response, as shown by a reduced production of reactive oxygen species (ROS) in response to the flagellin peptide flg22, whereas it stimulated another part, namely the induction of defense genes. In summary, our data indicate the potential for NopM as a functional NEL domain E3 ubiquitin ligase. Our findings that NopM dampened the flg22-induced ROS burst in N. benthamiana but promoted defense gene induction are consistent with the concept that pattern-triggered immunity is split in two separate signaling branches, one leading to ROS production and the other to defense gene induction.

          Author Summary

          Many Gram-negative bacterial pathogens possess type 3 secretion systems, which deliver effector proteins into eukaryotic host cells through needle-like structures. Effectors manipulate the host cell and many of them suppress host defense responses. Interestingly, certain symbiotic strains of rhizobia also possess such secretion systems. Rhizobia infect legume roots and induce root nodules, where the bacteria convert atmospheric nitrogen into ammonia. Here, we characterize the effector NopM of Rhizobium sp. strain NGR234. We demonstrate that NopM possesses E3 ubiquitin ligase activity, indicating that NopM can “tag" proteins with ubiquitin, and thus target them for proteasome-dependent degradation. Using a mutant approach, we demonstrate that enzymatically active NopM promotes establishment of symbiosis with Lablab purpureus, the host plant from which NGR234 was originally isolated. We further examine effects of NopM when directly expressed in eukaryotic cells and show that NopM interferes with specific signaling pathways. NopM expressed in the model plant Nicotiana benthamiana dampened generation of reactive oxygen species (ROS), which are formed in response to the bacterial flagellin peptide flg22. We suggest that NopM promotes nodule initiation by reducing the levels of harmful ROS during the infection process.

          Related collections

          Most cited references 52

          • Record: found
          • Abstract: found
          • Article: not found

          Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans.

          pRK212.2, a derivative of the broad host range plasmid RK2, contains two EcoRI cleavage fragments, A and B, neither of which can replicate by itself in Escherichia coli. Fragment A (41.7 kilobases), but not fragment B (14.4 kilobases), can be cloned by insertion into the unrelated plasmids mini-F and ColE1. Fragment B contains the origin of replication and the ampicillin-resistance determinant of RK2. Transformation of E. coli cells containing the mini-F-fragment A hybrid plasmid with fragment B DNA results in the recircularization and replication of fragment B as a nonmobilizable plasmid (pRK2067) with the copy number and incompatibility properties of RK2. Fragment B cannot be cloned in the absence of fragment A because the latter fragment suppresses a function, specified by fragment B, that results in loss of host cell viability. A small segment (2.4 kilobases) of fragment B that contains the RK2 origin of replication but no longer affects host cell growth in the absence of fragment A had been cloned previously by insertion into a ColE1 plasmid. This hybrid plasmid, designated pRK256, will replicate in E. coli polA mutants only when a fragment A-bearing helper plasmid is present. These results demonstrate that the potentially lethal function specified by fragment B of RK2 is not necessary for replication and that at least one trans-acting function is directly involved in RK2 replication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants.

            In pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), plant cell surface receptors sense potential microbial pathogens by recognizing elicitors called PAMPs. Although diverse PAMPs trigger PTI through distinct receptors, the resulting intracellular responses overlap extensively. Despite this, a common component(s) linking signal perception with transduction remains unknown. In this study, we identify SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK)3/brassinosteroid-associated kinase (BAK)1, a receptor-like kinase previously implicated in hormone signaling, as a component of plant PTI. In Arabidopsis thaliana, AtSERK3/BAK1 rapidly enters an elicitor-dependent complex with FLAGELLIN SENSING 2 (FLS2), the receptor for the bacterial PAMP flagellin and its peptide derivative flg22. In the absence of AtSERK3/BAK1, early flg22-dependent responses are greatly reduced in both A. thaliana and Nicotiana benthamiana. Furthermore, N. benthamiana Serk3/Bak1 is required for full responses to unrelated PAMPs and, importantly, for restriction of bacterial and oomycete infections. Thus, SERK3/BAK1 appears to integrate diverse perception events into downstream PAMP responses, leading to immunity against a range of invading microbes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens.

              For many years, research on a suite of plant defense responses that begin when plants are exposed to general microbial elicitors was underappreciated, for a good reason: There has been no critical experimental demonstration of their importance in mediating plant resistance during pathogen infection. Today, these microbial elicitors are named pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) and the plant responses are known as PAMP-triggered immunity (PTI). Recent studies provide an elegant explanation for the difficulty of demonstrating the role of PTI in plant disease resistance. It turns out that the important contribution of PTI to disease resistance is masked by pathogen virulence effectors that have evolved to suppress it.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2012
                May 2012
                17 May 2012
                : 8
                : 5
                Affiliations
                [1 ]State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
                [2 ]Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
                Oregon State, United States of America
                Author notes

                ¤: Current address: Soybean Research Institute (Key Laboratory of Soybean Biology of the Chinese Education Ministry), Northeast Agricultural University, Harbin, China

                Conceived and designed the experiments: DWX SL ZPX DRH CS. Performed the experiments: DWX SL DRH LS. Analyzed the data: DWX SL ZPX DRH CS. Contributed reagents/materials/analysis tools: ZPX DRH TB CS. Wrote the paper: DWX DRH TB CS.

                Article
                PPATHOGENS-D-11-02363
                10.1371/journal.ppat.1002707
                3355095
                22615567
                Xin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 10
                Categories
                Research Article
                Biology

                Infectious disease & Microbiology

                Comments

                Comment on this article