48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tau promotes neurodegeneration through global chromatin relaxation

      research-article
      1 , 2 , 3 , 1 , *
      Nature neuroscience

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The microtubule-associated protein tau is involved in a number of neurodegenerative disorders, including Alzheimer’s disease (AD). Previous studies link oxidative stress and subsequent DNA damage to neuronal death in AD and related tauopathies. Since DNA damage can significantly alter chromatin structure, we examined epigenetic changes in tau-induced neurodegeneration. We have found widespread loss of heterochromatin in tau transgenic Drosophila and mice, and in human AD. Importantly, genetic rescue of tau-induced heterochromatin loss substantially reduced neurodegeneration in Drosophila. We identified oxidative stress and subsequent DNA damage as a mechanistic link between transgenic tau expression and heterochromatin relaxation, and found that heterochromatin loss permits aberrant gene expression in tauopathies. Furthermore, large-scale analyses from human AD brains revealed a widespread transcriptional increase in genes that are heterochromatically silenced in controls. Our results establish heterochromatin loss as a toxic effector of tau-induced neurodegeneration, and identify chromatin structure as a potential therapeutic target in AD.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          A germline-specific class of small RNAs binds mammalian Piwi proteins.

          Small RNAs associate with Argonaute proteins and serve as sequence-specific guides to regulate messenger RNA stability, protein synthesis, chromatin organization and genome structure. In animals, Argonaute proteins segregate into two subfamilies. The Argonaute subfamily acts in RNA interference and in microRNA-mediated gene regulation using 21-22-nucleotide RNAs as guides. The Piwi subfamily is involved in germline-specific events such as germline stem cell maintenance and meiosis. However, neither the biochemical function of Piwi proteins nor the nature of their small RNA guides is known. Here we show that MIWI, a murine Piwi protein, binds a previously uncharacterized class of approximately 29-30-nucleotide RNAs that are highly abundant in testes. We have therefore named these Piwi-interacting RNAs (piRNAs). piRNAs show distinctive localization patterns in the genome, being predominantly grouped into 20-90-kilobase clusters, wherein long stretches of small RNAs are derived from only one strand. Similar piRNAs are also found in human and rat, with major clusters occurring in syntenic locations. Although their function must still be resolved, the abundance of piRNAs in germline cells and the male sterility of Miwi mutants suggest a role in gametogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel class of small RNAs bind to MILI protein in mouse testes.

            Small RNAs bound to Argonaute proteins recognize partially or fully complementary nucleic acid targets in diverse gene-silencing processes. A subgroup of the Argonaute proteins--known as the 'Piwi family'--is required for germ- and stem-cell development in invertebrates, and two Piwi members--MILI and MIWI--are essential for spermatogenesis in mouse. Here we describe a new class of small RNAs that bind to MILI in mouse male germ cells, where they accumulate at the onset of meiosis. The sequences of the over 1,000 identified unique molecules share a strong preference for a 5' uridine, but otherwise cannot be readily classified into sequence families. Genomic mapping of these small RNAs reveals a limited number of clusters, suggesting that these RNAs are processed from long primary transcripts. The small RNAs are 26-31 nucleotides (nt) in length--clearly distinct from the 21-23 nt of microRNAs (miRNAs) or short interfering RNAs (siRNAs)--and we refer to them as 'Piwi-interacting RNAs' or piRNAs. Orthologous human chromosomal regions also give rise to small RNAs with the characteristics of piRNAs, but the cloned sequences are distinct. The identification of this new class of small RNAs provides an important starting point to determine the molecular function of Piwi proteins in mammalian spermatogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tau is a candidate gene for chromosome 17 frontotemporal dementia.

              Frontotemporal dementia with parkinsonism, chromosome 17 type (FTDP-17), a recently defined disease entity, is clinically characterized by personality changes sometimes associated with psychosis, hyperorality, and diminished speech output, disturbed executive function and nonfluent aphasia, bradykinesia, and rigidity. Neuropathological changes include frontotemporal atrophy often associated with atrophy of the basal ganglia, substantia nigra, and amygdala. Neurofibrillary tangles (NFTs) are seen in some but not all families. Inheritance is autosomal dominant and the gene has been regionally localized to 17q21-22 in a 2- to 4-centimorgan (cM) region flanked by markers D17S800 and D17S791. The gene for tau, the primary component of NFTs, is located in the same region of chromosome 17. Tau was evaluated as a candidate gene. Physical mapping studies place tau within 2 megabases or less of D17S791, but it is probably outside the D17S800-D17S791 FTDP-17 interval. DNA sequence analysis of tau coding regions in affected subjects from two FTDP-17 families revealed nine DNA sequence variants, eight of which were also identified in controls and are thus polymorphisms. A ninth variant (Val279Met) was found in one FTDP-17 family but not in the second FTDP-17 family. Three lines of evidence indicate that the Val279Met change is an FTDP-17 causative mutation. First, the mutation site is highly conserved, and a normal valine is found at this position in all three tau interrepeat sequences and in other microtubule associated protein tau homologues. Second, the mutation co-segregates with the disease in family A. Third, the mutation is not found in normal controls.
                Bookmark

                Author and article information

                Journal
                9809671
                21092
                Nat Neurosci
                Nat. Neurosci.
                Nature neuroscience
                1097-6256
                1546-1726
                10 March 2014
                26 January 2014
                March 2014
                01 September 2014
                : 17
                : 3
                : 357-366
                Affiliations
                [1 ]Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
                [2 ]Department of Ophthalmology and Program in Neurobiology, Boston Children’s Hospital, Boston, MA, 02115, USA
                [3 ]Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
                Author notes
                [* ]Correspondence should be addressed to M.B.F. ( mel_feany@ 123456hms.harvard.edu ) Mel B. Feany, M.D., Ph.D. Department of Pathology Brigham and Women’s Hospital Harvard Medical School 77 Avenue Louis Pasteur, Room 630 Boston, MA 02115 Tel: (617) 525-4405 Fax: (617) 525-4422
                Article
                NIHMS560028
                10.1038/nn.3639
                4012297
                24464041
                8084e9e6-f975-4eca-bc5e-c04516a5f1cf
                History
                Categories
                Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article