35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Observation of Zeeman effect in topological surface state with distinct material dependence

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The helical Dirac fermions on the surface of topological insulators host novel relativistic quantum phenomena in solids. Manipulating spins of topological surface state (TSS) represents an essential step towards exploring the theoretically predicted exotic states related to time reversal symmetry (TRS) breaking via magnetism or magnetic field. Understanding Zeeman effect of TSS and determining its g-factor are pivotal for such manipulations in the latter form of TRS breaking. Here, we report those direct experimental observations in Bi2Se3 and Sb2Te2Se by spectroscopic imaging scanning tunneling microscopy. The Zeeman shifting of zero mode Landau level is identified unambiguously by judiciously excluding the extrinsic influences associated with the non-linearity in the TSS band dispersion and the spatially varying potential. The g-factors of TSS in Bi2Se3 and Sb2Te2Se are determined to be 18 and -6, respectively. This remarkable material dependence opens a new route to control the spins in the TSS.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator

          The quantized version of the anomalous Hall effect has been predicted to occur in magnetic topological insulators, but the experimental realization has been challenging. Here, we report the observation of the quantum anomalous Hall (QAH) effect in thin films of Cr-doped (Bi,Sb)2Te3, a magnetic topological insulator. At zero magnetic field, the gate-tuned anomalous Hall resistance reaches the predicted quantized value of h/e^2,accompanied by a considerable drop of the longitudinal resistance. Under a strong magnetic field, the longitudinal resistance vanishes whereas the Hall resistance remains at the quantized value. The realization of the QAH effect may lead to the development of low-power-consumption electronics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantized Anomalous Hall Effect in Magnetic Topological Insulators

            The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quantum versions of the Hall effect and the spin Hall effect have been discovered in recent years. However, the quantized anomalous Hall (QAH) effect has not yet been realized experimentally. In a QAH insulator, spontaneous magnetic moments and spin-orbit coupling combine to give rise to a topologically non-trivial electronic structure, leading to the quantized Hall effect without any external magnetic field. In this work, based on state-of-art first principles calculations, we predict that the tetradymite semiconductors Bi\(_2\)Te\(_3\), Bi\(_2\)Se\(_3\), and Sb\(_2\)Te\(_3\) form magnetically ordered insulators when doped with transition metal elements (Cr or Fe), in sharp contrast to conventional dilute magnetic semiconductor where free carriers are necessary to mediate the magnetic coupling. Magnetic order in two-dimensional thin films gives rise to a topological electronic structure characterized by a finite Chern number, with quantized Hall conductance \(e^{2}/h\). Experimental realization of the long sought-after QAH insulator state could enable robust dissipationless charge transport at room temperature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inducing a magnetic monopole with topological surface States.

              Existence of the magnetic monopole is compatible with the fundamental laws of nature; however, this elusive particle has yet to be detected experimentally. We show theoretically that an electric charge near a topological surface state induces an image magnetic monopole charge due to the topological magneto-electric effect. The magnetic field generated by the image magnetic monopole may be experimentally measured, and the inverse square law of the field dependence can be determined quantitatively. We propose that this effect can be used to experimentally realize a gas of quantum particles carrying fractional statistics, consisting of the bound states of the electric charge and the image magnetic monopole charge.
                Bookmark

                Author and article information

                Journal
                10.1038/ncomms10829
                1601.01740

                Condensed matter,Nanophysics
                Condensed matter, Nanophysics

                Comments

                Comment on this article