11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of Pro-inflammatory and Anti-apoptotic Biomarkers during Experimental Oral Cancer Chemoprevention by Dietary Black Raspberries

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oral cancer continues to be a significant public health problem worldwide. Recently conducted clinical trials demonstrate the ability of black raspberries (BRBs) to modulate biomarkers of molecular efficacy that supports a chemopreventive strategy against oral cancer. However, it is essential that a preclinical animal model of black raspberry (BRB) chemoprevention which recapitulates human oral carcinogenesis be developed, so that we can validate biomarkers and evaluate potential mechanisms of action. We therefore established the ability of BRBs to inhibit oral lesion formation in a carcinogen-induced rat oral cancer model and examined potential mechanisms. F344 rats were administered 4-nitroquinoline 1-oxide (4NQO) (20 µg/ml) in drinking water for 14 weeks followed by regular drinking water for 6 weeks. At week 14, rats were fed a diet containing either 5 or 10% BRB, or 0.4% ellagic acid (EA), a BRB phytochemical. Dietary administration of 5 and 10% BRB reduced oral lesion incidence and multiplicity by 39.3 and 28.6%, respectively. Histopathological analyses demonstrate the ability of BRBs and, to a lesser extent EA, to inhibit the progression of oral cancer. Oral lesion inhibition by BRBs was associated with a reduction in the mRNA expression of pro-inflammatory biomarkers Cxcl1, Mif, and Nfe2l2 as well as the anti-apoptotic and cell cycle associated markers Birc5, Aurka, Ccna1, and Ccna2. Cellular proliferation (Ki-67 staining) in tongue lesions was inhibited by BRBs and EA. Our study demonstrates that, in the rat 4NQO oral cancer model, dietary administration of BRBs inhibits oral carcinogenesis via inhibition of pro-inflammatory and anti-apoptotic pathways.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Vegetables, fruit, and cancer prevention: a review.

          In this review of the scientific literature on the relationship between vegetable and fruit consumption and risk of cancer, results from 206 human epidemiologic studies and 22 animal studies are summarized. The evidence for a protective effect of greater vegetable and fruit consumption is consistent for cancers of the stomach, esophagus, lung, oral cavity and pharynx, endometrium, pancreas, and colon. The types of vegetables or fruit that most often appear to be protective against cancer are raw vegetables, followed by allium vegetables, carrots, green vegetables, cruciferous vegetables, and tomatoes. Substances present in vegetables and fruit that may help protect against cancer, and their mechanisms, are also briefly reviewed; these include dithiolthiones, isothiocyanates, indole-3-carbinol, allium compounds, isoflavones, protease inhibitors, saponins, phytosterols, inositol hexaphosphate, vitamin C, D-limonene, lutein, folic acid, beta carotene, lycopene, selenium, vitamin E, flavonoids, and dietary fiber. Current US vegetable and fruit intake, which averages about 3.4 servings per day, is discussed, as are possible noncancer-related effects of increased vegetable and fruit consumption, including benefits against cardiovascular disease, diabetes, stroke, obesity, diverticulosis, and cataracts. Suggestions for dietitians to use in counseling persons toward increasing vegetable and fruit intake are presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            4-nitroquinoline-1-oxide induced experimental oral carcinogenesis.

            Human oral cancer is the sixth largest group of malignancies worldwide and single largest group of malignancies in the Indian subcontinent. Seventy percent of premalignant cancers appear from premalignant lesions. Only 8-10% of these lesions finally turn into malignancy. The appearance of these premalignant lesions is one distinct feature of human oral cancer. At present there is dearth of biomarkers to identify which of these lesions will turn into malignancy. Regional lymph node metastasis and locoregional recurrence are the major factors responsible for the limited survival of patients with oral cancer. Paucity of early diagnostic and prognostic markers is one of the contributory factors for higher mortality rates. Cancer is a multistep process and because of constrain in availability of human tissues from multiple stages of oral carcinogenesis including normal tissues, animal models are being widely used, aiming for the development of diagnostic and prognostic markers. A number of chemical carcinogens like coal tar, 20 methyl cholanthrene (20MC), 9,10-dimethyl-1,2-benzanthracene (DMBA) and 4-nitroquinoline-1-oxide (4NQO) have been used in experimental oral carcinogenesis. However, 4NQO is the preferred carcinogen apart from DMBA in the development of experimental oral carcinogenesis. 4NQO is a water soluble carcinogen, which induces tumors predominantly in the oral cavity. It produces all the stages of oral carcinogenesis and several lines of evidences suggest that similar histological as well as molecular changes are observed in the human system. In the present review an attempt has been made to collate the information available on mechanisms of action of 4NQO, studies carried out for the development of biomarkers and chemopreventives agents using 4NQO animal models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fruit and vegetables and cancer risk

              T J Key (2010)
              The possibility that fruit and vegetables may help to reduce the risk of cancer has been studied for over 30 years, but no protective effects have been firmly established. For cancers of the upper gastrointestinal tract, epidemiological studies have generally observed that people with a relatively high intake of fruit and vegetables have a moderately reduced risk, but these observations must be interpreted cautiously because of potential confounding by smoking and alcohol. For lung cancer, recent large prospective analyses with detailed adjustment for smoking have not shown a convincing association between fruit and vegetable intake and reduced risk. For other common cancers, including colorectal, breast and prostate cancer, epidemiological studies suggest little or no association between total fruit and vegetable consumption and risk. It is still possible that there are benefits to be identified: there could be benefits in populations with low average intakes of fruit and vegetables, such that those eating moderate amounts have a lower cancer risk than those eating very low amounts, and there could also be effects of particular nutrients in certain fruits and vegetables, as fruit and vegetables have very varied composition. Nutritional principles indicate that healthy diets should include at least moderate amounts of fruit and vegetables, but the available data suggest that general increases in fruit and vegetable intake would not have much effect on cancer rates, at least in well-nourished populations. Current advice in relation to diet and cancer should include the recommendation to consume adequate amounts of fruit and vegetables, but should put most emphasis on the well-established adverse effects of obesity and high alcohol intakes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                23 October 2017
                2017
                : 8
                : 1325
                Affiliations
                [1] 1Division of Environmental Health Sciences, College of Public Health, The Ohio State University Columbus , Columbus, OH, United States
                [2] 2Comprehensive Cancer Center, The Ohio State University Columbus , Columbus, OH, United States
                [3] 3School of Dental Medicine, University of Pittsburgh , Pittsburgh, PA, United States
                [4] 4Department of Otolaryngology, College of Medicine, The Ohio State University Columbus , Columbus, OH, United States
                Author notes

                Edited by: Jixin Zhong, Case Western Reserve University, United States

                Reviewed by: Penghua Yang, University of Maryland, United States; Xiaojing Yue, La Jolla Institute for Allergy and Immunology, United States

                *Correspondence: Steve Oghumu, oghumu.1@ 123456osu.edu ; Christopher M. Weghorst, weghorst.2@ 123456osu.edu ; Thomas J. Knobloch, knobloch.1@ 123456osu.edu

                Specialty section: This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2017.01325
                5660285
                29109723
                8094e404-99ef-4b25-b952-72465b364761
                Copyright © 2017 Oghumu, Casto, Ahn-Jarvis, Weghorst, Maloney, Geuy, Horvath, Bollinger, Warner, Summersgill, Weghorst and Knobloch.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 August 2017
                : 29 September 2017
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 39, Pages: 12, Words: 7902
                Funding
                Funded by: National Cancer Institute 10.13039/100000054
                Award ID: R21CA175836, U01CA188250, P30CA016058, K01CA207599
                Funded by: National Institute of Dental and Craniofacial Research 10.13039/100000072
                Award ID: T32DE014320
                Funded by: National Center for Advancing Translational Sciences 10.13039/100006108
                Award ID: UL1TR001070
                Categories
                Immunology
                Original Research

                Immunology
                oral cancer,black raspberry,chemoprevention,pro-inflammatory,biomarker
                Immunology
                oral cancer, black raspberry, chemoprevention, pro-inflammatory, biomarker

                Comments

                Comment on this article