10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The adaptive significance of chromosomal inversion polymorphisms in Drosophila melanogaster

      1 , 1
      Molecular Ecology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references154

          • Record: found
          • Abstract: found
          • Article: not found

          The impact of next-generation sequencing technology on genetics.

          If one accepts that the fundamental pursuit of genetics is to determine the genotypes that explain phenotypes, the meteoric increase of DNA sequence information applied toward that pursuit has nowhere to go but up. The recent introduction of instruments capable of producing millions of DNA sequence reads in a single run is rapidly changing the landscape of genetics, providing the ability to answer questions with heretofore unimaginable speed. These technologies will provide an inexpensive, genome-wide sequence readout as an endpoint to applications ranging from chromatin immunoprecipitation, mutation mapping and polymorphism discovery to noncoding RNA discovery. Here I survey next-generation sequencing technologies and consider how they can provide a more complete picture of how the genome shapes the organism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sequencing and comparison of yeast species to identify genes and regulatory elements.

            Identifying the functional elements encoded in a genome is one of the principal challenges in modern biology. Comparative genomics should offer a powerful, general approach. Here, we present a comparative analysis of the yeast Saccharomyces cerevisiae based on high-quality draft sequences of three related species (S. paradoxus, S. mikatae and S. bayanus). We first aligned the genomes and characterized their evolution, defining the regions and mechanisms of change. We then developed methods for direct identification of genes and regulatory motifs. The gene analysis yielded a major revision to the yeast gene catalogue, affecting approximately 15% of all genes and reducing the total count by about 500 genes. The motif analysis automatically identified 72 genome-wide elements, including most known regulatory motifs and numerous new motifs. We inferred a putative function for most of these motifs, and provided insights into their combinatorial interactions. The results have implications for genome analysis of diverse organisms, including the human.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chromosome inversions, local adaptation and speciation.

              We study the evolution of inversions that capture locally adapted alleles when two populations are exchanging migrants or hybridizing. By suppressing recombination between the loci, a new inversion can spread. Neither drift nor coadaptation between the alleles (epistasis) is needed, so this local adaptation mechanism may apply to a broader range of genetic and demographic situations than alternative hypotheses that have been widely discussed. The mechanism can explain many features observed in inversion systems. It will drive an inversion to high frequency if there is no countervailing force, which could explain fixed differences observed between populations and species. An inversion can be stabilized at an intermediate frequency if it also happens to capture one or more deleterious recessive mutations, which could explain polymorphisms that are common in some species. This polymorphism can cycle in frequency with the changing selective advantage of the locally favored alleles. The mechanism can establish underdominant inversions that decrease heterokaryotype fitness by several percent if the cause of fitness loss is structural, while if the cause is genic there is no limit to the strength of underdominance that can result. The mechanism is expected to cause loci responsible for adaptive species-specific differences to map to inversions, as seen in recent QTL studies. We discuss data that support the hypothesis, review other mechanisms for inversion evolution, and suggest possible tests.
                Bookmark

                Author and article information

                Journal
                Molecular Ecology
                Mol Ecol
                Wiley
                0962-1083
                1365-294X
                April 20 2019
                March 2019
                November 03 2018
                March 2019
                : 28
                : 6
                : 1263-1282
                Affiliations
                [1 ]Department of BiologyUniversity of Fribourg Fribourg Switzerland
                Article
                10.1111/mec.14871
                30230076
                8095c54f-0a92-4e78-8041-b0abca4f5744
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article