Blog
About

1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Two-dimensional DOA Estimation with High Accuracy for MIMO Radar Using Cross Array

      Read this article at

      ScienceOpenPublisherDOAJ
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we investigate the estimation of the Two-Dimensional (2D) Direction Of Arrival (DOA) in monostatic multiple-input–multiple-output radar with cross array and propose a novel, highly accurate DOA estimation method based on unitary transformation. First, we design a new unitary matrix using the central symmetry of a cross array at transmit and receive sites. Then, the rotational invariance relationships of these arrays with long and short baselines can be transformed into a real-value field via unitary transformation. In addition, non-ambiguous and highly accurate 2D DOA estimations can be obtained using a unitary dual-resolution ESPRIT algorithm. Simulations show that the proposed method can estimate 2D highly accurate spatial angles using automatic pairing without incurring the expense of array aperture and peak searching. Compared with traditional unitary transformation, the steering vectors of transmit and receive arrays can be transformed into real-value fields via the unitary matrix and the transformation method of our scheme, respectively. This effectively overcomes the problem of shift invariance factors in real-value fields that cannot be extracted using traditional algorithms. Therefore, the proposed method can absolutely compute eigenvalue decomposition and estimate parameters in a real-value field, resulting in lower computational complexity compared with traditional methods. Simulation results verify both the correctness of our theoretical analysis and the effectiveness of the proposed algorithm.

          Related collections

          Author and article information

          Journal
          Journal of Radars
          Chinese Academy of Sciences
          01 June 2016
          : 5
          : 3
          : 254-264
          Affiliations
          [1 ] 401 Laboratory, Department of Communication Countermeasure, Electronic Engineering Institute, Hefei 230037, China
          Article
          7bc96dcac15c4a70ad97e85b917f3073
          10.12000/JR16016

          This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

          Categories
          Technology (General)
          T1-995

          Comments

          Comment on this article