5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of microbial inoculants as bio fertilizers for improving crop productivity: A review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The world's population is increasing and is anticipated to spread 10 billion by 2050, and the issue of food security is becoming a global concern. To maintain global food security, it is essential to increase crop productivity under changing climatic conditions. Conventional agricultural practices frequently use artificial/chemical fertilizers to enhance crop productivity, but these have numerous negative effects on the environment and people's health. To address these issues, researchers have been concentrating on substitute crop fertilization methods for many years, and biofertilizers as a crucial part of agricultural practices are quickly gaining popularity all over the globe. Biofertilizers are living formulations made of indigenous plant growth-promoting rhizobacteria (PGPR) which are substantial, environment-friendly, and economical biofertilizers for amassing crop productivity by enhancing plant development either directly or indirectly, and are the renewable source of plant nutrients and sustainable agronomy. The review aims to provide a comprehensive overview of the current knowledge on microbial inoculants as biofertilizers, including their types, mechanisms of action, effects on crop productivity, challenges, and limitations associated with the use of microbial inoculants. In this review, we focused on the application of biofertilizers to agricultural fields in plant growth development by performing several activities like nitrogen fixation, siderophore production, phytohormone production, nutrient solubilization, and facilitating easy uptake by crop plants. Further, we discussed the indirect mechanism of PGPRs, in developing induced system resistance against pest and diseases, and as a biocontrol agent for phytopathogens. This review article presents a brief outline of the ideas and uses of microbial inoculants in improving crop productivity as well as a discussion of the challenges and limitations to use microbial inoculants.

          Related collections

          Most cited references186

          • Record: found
          • Abstract: found
          • Article: not found

          Induced systemic resistance by beneficial microbes.

          Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth-promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hormonal modulation of plant immunity.

            Plant hormones have pivotal roles in the regulation of plant growth, development, and reproduction. Additionally, they emerged as cellular signal molecules with key functions in the regulation of immune responses to microbial pathogens, insect herbivores, and beneficial microbes. Their signaling pathways are interconnected in a complex network, which provides plants with an enormous regulatory potential to rapidly adapt to their biotic environment and to utilize their limited resources for growth and survival in a cost-efficient manner. Plants activate their immune system to counteract attack by pathogens or herbivorous insects. Intriguingly, successful plant enemies evolved ingenious mechanisms to rewire the plant's hormone signaling circuitry to suppress or evade host immunity. Evidence is emerging that beneficial root-inhabiting microbes also hijack the hormone-regulated immune signaling network to establish a prolonged mutualistic association, highlighting the central role of plant hormones in the regulation of plant growth and survival.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemistry and biology of siderophores.

              Siderophores are compounds produced by bacteria, fungi and graminaceous plants for scavenging iron from the environment. They are low-molecular-weight compounds (500-1500 daltons) possessing a high affinity for iron(III) (Kf > 1030), the biosynthesis of which is regulated by iron levels and the function of which is to supply iron to the cell. This article briefly describes the classification and chemical properties of siderophores, before outlining research on siderophore biosynthesis and transport. Clinically important siderophores and the therapeutic potential of siderophore design are described. Appendix 1 provides a comprehensive list of siderophore structures.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                16 May 2023
                June 2023
                16 May 2023
                : 9
                : 6
                : e16134
                Affiliations
                [a ]Genetics and Molecular Biology Section, Department of Botany, Aligarh Muslim University, Aligarh, U.P., India
                [b ]Plant Genomics and Molecular Biology Laboratory, Department of Horticultural Bioscience, Pusan National University, Miryang, 50463, South Korea
                [c ]Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
                [d ]Research and Training Center on Pollinators and Pollination Management Section, Division of Entomology, SKAUST, Kashmir, 190025, India
                [e ]Department of Plant Production, College of Food & Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
                Author notes
                []Corresponding author. Plant Genomics and Molecular Biology Laboratory, Department of Horticultural Bioscience, Pusan National University, Miryang, 50463, South Korea. dsh92@ 123456pusan.ac.kr
                [∗∗ ]Corresponding author.
                Article
                S2405-8440(23)03341-8 e16134
                10.1016/j.heliyon.2023.e16134
                10225898
                37255980
                80aaca2e-737b-4154-a860-d3dd2b25f798
                © 2023 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 24 November 2022
                : 19 April 2023
                : 6 May 2023
                Categories
                Review Article

                microbial inoculants,biofertilizers,crop productivity,nitrogen fixation,phytohormones,nutrient solubilization

                Comments

                Comment on this article