50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Depression as a Glial-Based Synaptic Dysfunction

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies combining pharmacological, behavioral, electrophysiological and molecular approaches indicate that depression results from maladaptive neuroplastic processes occurring in defined frontolimbic circuits responsible for emotional processing such as the prefrontal cortex, hippocampus, amygdala and ventral striatum. However, the exact mechanisms controlling synaptic plasticity that are disrupted to trigger depressive conditions have not been elucidated. Since glial cells (astrocytes and microglia) tightly and dynamically interact with synapses, engaging a bi-directional communication critical for the processing of synaptic information, we now revisit the role of glial cells in the etiology of depression focusing on a dysfunction of the “quad-partite” synapse. This interest is supported by the observations that depressive-like conditions are associated with a decreased density and hypofunction of astrocytes and with an increased microglia “activation” in frontolimbic regions, which is expected to contribute for the synaptic dysfunction present in depression. Furthermore, the traditional culprits of depression (glucocorticoids, biogenic amines, brain-derived neurotrophic factor, BDNF) affect glia functioning, whereas antidepressant treatments (serotonin-selective reuptake inhibitors, SSRIs, electroshocks, deep brain stimulation) recover glia functioning. In this context of a quad-partite synapse, systems modulating glia-synapse bidirectional communication—such as the purinergic neuromodulation system operated by adenosine 5′-triphosphate (ATP) and adenosine—emerge as promising candidates to “re-normalize” synaptic function by combining direct synaptic effects with an ability to also control astrocyte and microglia function. This proposed triple action of purines to control aberrant synaptic function illustrates the rationale to consider the interference with glia dysfunction as a mechanism of action driving the design of future pharmacological tools to manage depression.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Synaptic dysfunction in depression: potential therapeutic targets.

          Basic and clinical studies demonstrate that depression is associated with reduced size of brain regions that regulate mood and cognition, including the prefrontal cortex and the hippocampus, and decreased neuronal synapses in these areas. Antidepressants can block or reverse these neuronal deficits, although typical antidepressants have limited efficacy and delayed response times of weeks to months. A notable recent discovery shows that ketamine, a N-methyl-D-aspartate receptor antagonist, produces rapid (within hours) antidepressant responses in patients who are resistant to typical antidepressants. Basic studies show that ketamine rapidly induces synaptogenesis and reverses the synaptic deficits caused by chronic stress. These findings highlight the central importance of homeostatic control of mood circuit connections and form the basis of a synaptogenic hypothesis of depression and treatment response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tripartite synapses: glia, the unacknowledged partner.

            According to the classical view of the nervous system, the numerically superior glial cells have inferior roles in that they provide an ideal environment for neuronal-cell function. However, there is a wave of new information suggesting that glia are intimately involved in the active control of neuronal activity and synaptic neurotransmission. Recent evidence shows that glia respond to neuronal activity with an elevation of their internal Ca2+ concentration, which triggers the release of chemical transmitters from glia themselves and, in turn, causes feedback regulation of neuronal activity and synaptic strength. In view of these new insights, this article suggests that perisynaptic Schwann cells and synaptically associated astrocytes should be viewed as integral modulatory elements of tripartite synapses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antidepressant effects of ketamine in depressed patients.

              A growing body of preclinical research suggests that brain glutamate systems may be involved in the pathophysiology of major depression and the mechanism of action of antidepressants. This is the first placebo-controlled, double-blinded trial to assess the treatment effects of a single dose of an N-methyl-D-aspartate (NMDA) receptor antagonist in patients with depression. Seven subjects with major depression completed 2 test days that involved intravenous treatment with ketamine hydrochloride (.5 mg/kg) or saline solutions under randomized, double-blind conditions. Subjects with depression evidenced significant improvement in depressive symptoms within 72 hours after ketamine but not placebo infusion (i.e., mean 25-item Hamilton Depression Rating Scale scores decreased by 14 +/- SD 10 points vs. 0 +/- 12 points, respectively during active and sham treatment). These results suggest a potential role for NMDA receptor-modulating drugs in the treatment of depression.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                22 January 2016
                2015
                : 9
                : 521
                Affiliations
                [1] 1CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
                [2] 2Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC Brazil
                [3] 3Faculty of Medicine, University of Coimbra Coimbra, Portugal
                Author notes

                Edited by: Tycho M. Hoogland, Erasmus MC, Netherlands

                Reviewed by: Lisa Mapelli, University of Pavia, Italy; Anna Maria Pugliese, University of Florence, Italy

                *Correspondence: Rodrigo A. Cunha cunharod@ 123456gmail.com
                Article
                10.3389/fncel.2015.00521
                4722129
                26834566
                80c0b504-ec21-4f90-9d20-625e64f980b1
                Copyright © 2016 Rial, Lemos, Pinheiro, Duarte, Gonçalves, Real, Prediger, Gonçalves, Gomes, Canas, Agostinho and Cunha.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 November 2015
                : 27 December 2015
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 199, Pages: 11, Words: 9965
                Categories
                Neuroscience
                Mini Review

                Neurosciences
                depression,synapse,astrocytes,microglia,purines
                Neurosciences
                depression, synapse, astrocytes, microglia, purines

                Comments

                Comment on this article