Blog
About

66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of Inclusion of Industry Trial Results Registries as an Information Source for Systematic Reviews

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Clinical trial results registries may contain relevant unpublished information. Our main aim was to investigate the potential impact of the inclusion of reports from industry results registries on systematic reviews (SRs).

          Methods

          We identified a sample of 150 eligible SRs in PubMed via backward selection. Eligible SRs investigated randomized controlled trials of drugs and included at least 2 bibliographic databases (original search date: 11/2009). We checked whether results registries of manufacturers and/or industry associations had also been searched. If not, we searched these registries for additional trials not considered in the SRs, as well as for additional data on trials already considered. We reanalysed the primary outcome and harm outcomes reported in the SRs and determined whether results had changed. A “change” was defined as either a new relevant result or a change in the statistical significance of an existing result. We performed a search update in 8/2013 and identified a sample of 20 eligible SRs to determine whether mandatory results registration from 9/2008 onwards in the public trial and results registry ClinicalTrials.gov had led to its inclusion as a standard information source in SRs, and whether the inclusion rate of industry results registries had changed.

          Results

          133 of the 150 SRs (89%) in the original analysis did not search industry results registries. For 23 (17%) of these SRs we found 25 additional trials and additional data on 31 trials already included in the SRs. This additional information was found for more than twice as many SRs of drugs approved from 2000 as approved beforehand. The inclusion of the additional trials and data yielded changes in existing results or the addition of new results for 6 of the 23 SRs. Of the 20 SRs retrieved in the search update, 8 considered ClinicalTrials.gov or a meta-registry linking to ClinicalTrials.gov, and 1 considered an industry results registry.

          Conclusion

          The inclusion of industry and public results registries as an information source in SRs is still insufficient and may result in publication and outcome reporting bias. In addition to an essential search in ClinicalTrials.gov, authors of SRs should consider searching industry results registries.

          Related collections

          Most cited references 32

          • Record: found
          • Abstract: found
          • Article: not found

          Pharmaceutical industry sponsorship and research outcome and quality: systematic review.

          To investigate whether funding of drug studies by the pharmaceutical industry is associated with outcomes that are favourable to the funder and whether the methods of trials funded by pharmaceutical companies differ from the methods in trials with other sources of support. Medline (January 1966 to December 2002) and Embase (January 1980 to December 2002) searches were supplemented with material identified in the references and in the authors' personal files. Data were independently abstracted by three of the authors and disagreements were resolved by consensus. 30 studies were included. Research funded by drug companies was less likely to be published than research funded by other sources. Studies sponsored by pharmaceutical companies were more likely to have outcomes favouring the sponsor than were studies with other sponsors (odds ratio 4.05; 95% confidence interval 2.98 to 5.51; 18 comparisons). None of the 13 studies that analysed methods reported that studies funded by industry was of poorer quality. Systematic bias favours products which are made by the company funding the research. Explanations include the selection of an inappropriate comparator to the product being investigated and publication bias.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Systematic Review of the Empirical Evidence of Study Publication Bias and Outcome Reporting Bias

            Background The increased use of meta-analysis in systematic reviews of healthcare interventions has highlighted several types of bias that can arise during the completion of a randomised controlled trial. Study publication bias has been recognised as a potential threat to the validity of meta-analysis and can make the readily available evidence unreliable for decision making. Until recently, outcome reporting bias has received less attention. Methodology/Principal Findings We review and summarise the evidence from a series of cohort studies that have assessed study publication bias and outcome reporting bias in randomised controlled trials. Sixteen studies were eligible of which only two followed the cohort all the way through from protocol approval to information regarding publication of outcomes. Eleven of the studies investigated study publication bias and five investigated outcome reporting bias. Three studies have found that statistically significant outcomes had a higher odds of being fully reported compared to non-significant outcomes (range of odds ratios: 2.2 to 4.7). In comparing trial publications to protocols, we found that 40–62% of studies had at least one primary outcome that was changed, introduced, or omitted. We decided not to undertake meta-analysis due to the differences between studies. Conclusions Recent work provides direct empirical evidence for the existence of study publication bias and outcome reporting bias. There is strong evidence of an association between significant results and publication; studies that report positive or significant results are more likely to be published and outcomes that are statistically significant have higher odds of being fully reported. Publications have been found to be inconsistent with their protocols. Researchers need to be aware of the problems of both types of bias and efforts should be concentrated on improving the reporting of trials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scope and impact of financial conflicts of interest in biomedical research: a systematic review.

              Despite increasing awareness about the potential impact of financial conflicts of interest on biomedical research, no comprehensive synthesis of the body of evidence relating to financial conflicts of interest has been performed. To review original, quantitative studies on the extent, impact, and management of financial conflicts of interest in biomedical research. Studies were identified by searching MEDLINE (January 1980-October 2002), the Web of Science citation database, references of articles, letters, commentaries, editorials, and books and by contacting experts. All English-language studies containing original, quantitative data on financial relationships among industry, scientific investigators, and academic institutions were included. A total of 1664 citations were screened, 144 potentially eligible full articles were retrieved, and 37 studies met our inclusion criteria. One investigator (J.E.B.) extracted data from each of the 37 studies. The main outcomes were the prevalence of specific types of industry relationships, the relation between industry sponsorship and study outcome or investigator behavior, and the process for disclosure, review, and management of financial conflicts of interest. Approximately one fourth of investigators have industry affiliations, and roughly two thirds of academic institutions hold equity in start-ups that sponsor research performed at the same institutions. Eight articles, which together evaluated 1140 original studies, assessed the relation between industry sponsorship and outcome in original research. Aggregating the results of these articles showed a statistically significant association between industry sponsorship and pro-industry conclusions (pooled Mantel-Haenszel odds ratio, 3.60; 95% confidence interval, 2.63-4.91). Industry sponsorship was also associated with restrictions on publication and data sharing. The approach to managing financial conflicts varied substantially across academic institutions and peer-reviewed journals. Financial relationships among industry, scientific investigators, and academic institutions are widespread. Conflicts of interest arising from these ties can influence biomedical research in important ways.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                17 April 2014
                : 9
                : 4
                Affiliations
                Institute for Quality and Efficiency in Health Care, Cologne, Germany
                Johns Hopkins Bloomberg School of Public Health, United States of America
                Author notes

                Competing Interests: All authors are employees of the Institute for Quality and Efficiency in Health Care. In order to produce unbiased health technology assessment reports, the institute depends on access to all of the relevant data on the topic under investigation. The authors therefore support the mandatory worldwide establishment of trial registries and study results databases as well as the implementation of reporting standards for clinical trials. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: TK RP. Performed the experiments: RP VV MFK BW TK. Analyzed the data: VV. Wrote the paper: RP NM. Revised the manuscript draft and approved the final version: RP NM VV MFK BW TK.

                Article
                PONE-D-13-40552
                10.1371/journal.pone.0092067
                3990559
                24743113

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Page count
                Pages: 10
                Funding
                This study was funded by the Institute for Quality and Efficiency in Health Care. The funder provided support in the form of salaries for authors (RP, VV, NM, MFK, BW, and TK) and paid the publication fee, but did not have a role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section.
                Categories
                Research Article
                Medicine and Health Sciences
                Clinical Medicine
                Clinical Trials
                Pharmacology
                Drug Information
                Drug Research and Development
                Physical Sciences
                Mathematics
                Statistics (Mathematics)
                Statistical Methods
                Meta-Analysis
                Research and Analysis Methods
                Research Assessment
                Systematic Reviews
                Research Design
                Clinical Research Design
                Science Policy

                Uncategorized

                Comments

                Comment on this article