4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nutritional interventions for autism spectrum disorder

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental disorder with considerable clinical heterogeneity. With no cure for the disorder, treatments commonly center around speech and behavioral therapies to improve the characteristic social, behavioral, and communicative symptoms of ASD. Gastrointestinal disturbances are commonly encountered comorbidities that are thought to be not only another symptom of ASD but to also play an active role in modulating the expression of social and behavioral symptoms. Therefore, nutritional interventions are used by a majority of those with ASD both with and without clinical supervision to alleviate gastrointestinal and behavioral symptoms. Despite a considerable interest in dietary interventions, no consensus exists regarding optimal nutritional therapy. Thus, patients and physicians are left to choose from a myriad of dietary protocols. This review, summarizes the state of the current clinical and experimental literature on nutritional interventions for ASD, including gluten-free and casein-free, ketogenic, and specific carbohydrate diets, as well as probiotics, polyunsaturated fatty acids, and dietary supplements (vitamins A, C, B6, and B12; magnesium and folate).

          Related collections

          Most cited references 113

          • Record: found
          • Abstract: found
          • Article: not found

          Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism.

          Autism is a behaviorally defined neurodevelopmental disorder usually diagnosed in early childhood that is characterized by impairment in reciprocal communication and speech, repetitive behaviors, and social withdrawal. Although both genetic and environmental factors are thought to be involved, none have been reproducibly identified. The metabolic phenotype of an individual reflects the influence of endogenous and exogenous factors on genotype. As such, it provides a window through which the interactive impact of genes and environment may be viewed and relevant susceptibility factors identified. Although abnormal methionine metabolism has been associated with other neurologic disorders, these pathways and related polymorphisms have not been evaluated in autistic children. Plasma levels of metabolites in methionine transmethylation and transsulfuration pathways were measured in 80 autistic and 73 control children. In addition, common polymorphic variants known to modulate these metabolic pathways were evaluated in 360 autistic children and 205 controls. The metabolic results indicated that plasma methionine and the ratio of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH), an indicator of methylation capacity, were significantly decreased in the autistic children relative to age-matched controls. In addition, plasma levels of cysteine, glutathione, and the ratio of reduced to oxidized glutathione, an indication of antioxidant capacity and redox homeostasis, were significantly decreased. Differences in allele frequency and/or significant gene-gene interactions were found for relevant genes encoding the reduced folate carrier (RFC 80G > A), transcobalamin II (TCN2 776G > C), catechol-O-methyltransferase (COMT 472G > A), methylenetetrahydrofolate reductase (MTHFR 677C > T and 1298A > C), and glutathione-S-transferase (GST M1). We propose that an increased vulnerability to oxidative stress (endogenous or environmental) may contribute to the development and clinical manifestations of autism. (c) 2006 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis.

            We tested whether the attenuation of experimental colitis by live probiotic bacteria is due to their immunostimulatory DNA, whether toll-like receptor (TLR) signaling is required, and whether nonviable probiotics are effective. Methylated and unmethylated genomic DNA isolated from probiotics (VSL-3), DNAse-treated probiotics and Escherichia coli (DH5 alpha) genomic DNA were administered intragastrically (i.g.) or subcutaneously (s.c.) to mice prior to the induction of colitis. Viable or gamma-irradiated probiotics were administered i.g. to wild-type mice and mice deficient in different TLR or in the adaptor protein MyD88, 10 days prior to administration of dextran sodium sulfate (DSS) to their drinking water and for 7 days thereafter. Intragastric and s.c. administration of probiotic and E. coli DNA ameliorated the severity of DSS-induced colitis, whereas methylated probiotic DNA, calf thymus DNA, and DNase-treated probiotics had no effect. The colitis severity was attenuated to the same extent by i.g. delivery of nonviable gamma-irradiated or viable probiotics. Mice deficient in MyD88 did not respond to gamma-irradiated probiotics. The severity of DSS-induced colitis in TLR2 and TLR4 deficient mice was significantly decreased by i.g. administration of gamma-irradiated probiotics, whereas, in TLR9-deficient mice, gamma-irradiated probiotics had no effect. The protective effects of probiotics are mediated by their own DNA rather than by their metabolites or ability to colonize the colon. TLR9 signaling is essential in mediating the anti-inflammatory effect of probiotics, and live microorganisms are not required to attenuate experimental colitis because nonviable probiotics are equally effective.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress.

              Chronic psychological stress, including water avoidance stress (WAS), induces intestinal mucosal barrier dysfunction and impairs mucosal defences against luminal bacteria. The aim of this study was to determine the ability of a defined probiotic regimen to prevent WAS induced intestinal pathophysiology. Male rats were subjected to either WAS or sham stress for one hour per day for 10 consecutive days. Additional animals received seven days of Lactobacillus helveticus and L rhamnosus in the drinking water prior to stress and remained on these probiotics for the duration of the study. Rats were then sacrificed, intestinal segments assessed in Ussing chambers, and mesenteric lymph nodes cultured to determine bacterial translocation. All animals remained healthy for the duration of the study. Chronic WAS induced excess ion secretion (elevated baseline short circuit current) and barrier dysfunction (increased conductance) in both the ileum and colon, associated with increased bacterial adhesion and penetration into surface epithelial cells. Approximately 70% of rats subjected to WAS had bacterial translocation to mesenteric lymph nodes while there was no bacterial translocation in controls. Probiotic pretreatment alone had no effect on intestinal barrier function. However, WAS induced increased ileal short circuit current was reduced with probiotics whereas there was no impact on altered conductance. Pretreatment of animals with probiotics also completely abrogated WAS induced bacterial adhesion and prevented translocation of bacteria to mesenteric lymph nodes. These findings indicate that probiotics can prevent chronic stress induced intestinal abnormalities and, thereby, exert beneficial effects in the intestinal tract.
                Bookmark

                Author and article information

                Journal
                Nutrition Reviews
                Oxford University Press (OUP)
                0029-6643
                1753-4887
                December 26 2019
                December 26 2019
                Affiliations
                [1 ]E. Karhu, R. Zukerman, J. Mittal, R. Mittal, and A.A. Eshraghi are with the Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA. R.S. Eshraghi is with the Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA. R.C. Deth, A.M. Castejon, and M. Trivedi are with the Department of Pharmac
                Article
                10.1093/nutrit/nuz092
                © 2019

                Comments

                Comment on this article