5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative analysis and process optimization for manufacturing CAR-T using the PiggyBac system derived from cryopreserved versus fresh PBMCs

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chimeric antigen receptor T (CAR-T) therapy holds promise for cancer treatment but faces challenges with using fresh patient cells, including manufacturing failures and logistical hurdles. Cryopreserved peripheral blood mononuclear cells (PBMCs) offer a potential solution, and while lentiviral processes have been reported for generating CAR-T from these cells, few studies have demonstrated successful PiggyBac electroporation methods. Therefore, the objectives of our study were twofold: Firstly, to conduct a comparative study on cryopreserved PBMCs, fresh PBMCs, and their respective preparations of CAR-T. Secondly, to establish a PiggyBac electroporation CAR-T preparation process using cryopreserved PBMCs through process optimization. The results revealed that long-term frozen PBMCs viability in a relatively stable manner. CAR-T generated from cryopreserved PBMCs exhibited comparable expansion potential, cell phenotype, differentiation profiles, exhaustion markers, and cytotoxicity against human ovarian cancer cell line (SKOV-3) cells to those derived from fresh PBMCs. Moreover, through process optimization, we further enhanced the proliferation and toxicity of CAR-T. This approach has the potential to revolutionize the CAR-T production model by utilizing healthy donor cells instead of patient cells. This shift could mitigate issues affecting treatment efficacy, such as suboptimal cell condition following illness or delays in cell preparation.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Cancer statistics, 2024

            Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population‐based cancer occurrence and outcomes using incidence data collected by central cancer registries (through 2020) and mortality data collected by the National Center for Health Statistics (through 2021). In 2024, 2,001,140 new cancer cases and 611,720 cancer deaths are projected to occur in the United States. Cancer mortality continued to decline through 2021, averting over 4 million deaths since 1991 because of reductions in smoking, earlier detection for some cancers, and improved treatment options in both the adjuvant and metastatic settings. However, these gains are threatened by increasing incidence for 6 of the top 10 cancers. Incidence rates increased during 2015–2019 by 0.6%–1% annually for breast, pancreas, and uterine corpus cancers and by 2%–3% annually for prostate, liver (female), kidney, and human papillomavirus‐associated oral cancers and for melanoma. Incidence rates also increased by 1%–2% annually for cervical (ages 30–44 years) and colorectal cancers (ages <55 years) in young adults. Colorectal cancer was the fourth‐leading cause of cancer death in both men and women younger than 50 years in the late‐1990s but is now first in men and second in women. Progress is also hampered by wide persistent cancer disparities; compared to White people, mortality rates are two‐fold higher for prostate, stomach and uterine corpus cancers in Black people and for liver, stomach, and kidney cancers in Native American people. Continued national progress will require increased investment in cancer prevention and access to equitable treatment, especially among American Indian and Alaska Native and Black individuals.
              • Record: found
              • Abstract: found
              • Article: not found

              Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia

              Tolerance to self-antigens prevents the elimination of cancer by the immune system1,2. We used synthetic chimeric antigen receptors (CARs) to overcome immunological tolerance and mediate tumor rejection in patients with chronic lymphocytic leukemia (CLL). Remission was induced in a subset of subjects, but most did not respond. Comprehensive assessment of patient-derived CAR T cells to identify mechanisms of therapeutic success and failure has not been explored. We performed genomic, phenotypic and functional evaluations to identify determinants of response. Transcriptomic profiling revealed that CAR T cells from complete-responding patients with CLL were enriched in memory-related genes, including IL-6/STAT3 signatures, whereas T cells from nonresponders upregulated programs involved in effector differentiation, glycolysis, exhaustion and apoptosis. Sustained remission was associated with an elevated frequency of CD27+CD45RO-CD8+ T cells before CAR T cell generation, and these lymphocytes possessed memory-like characteristics. Highly functional CAR T cells from patients produced STAT3-related cytokines, and serum IL-6 correlated with CAR T cell expansion. IL-6/STAT3 blockade diminished CAR T cell proliferation. Furthermore, a mechanistically relevant population of CD27+PD-1-CD8+ CAR T cells expressing high levels of the IL-6 receptor predicts therapeutic response and is responsible for tumor control. These findings uncover new features of CAR T cell biology and underscore the potential of using pretreatment biomarkers of response to advance immunotherapies.

                Author and article information

                Contributors
                zenghuixu@163.com
                qianqj@shcell.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                11 February 2025
                11 February 2025
                2025
                : 15
                : 5023
                Affiliations
                [1 ]Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805 Shanghai China
                [2 ]Shanghai Cell Therapy Research Institute, ( https://ror.org/044ef5h76) 1585 Yuanguo Road, Shanghai, 201805 Shanghai China
                [3 ]Shanghai University Mengchao Cancer Hospital, ( https://ror.org/006teas31) 118 Qianyang Road, Shanghai, 201805 Shanghai China
                [4 ]School of Medicine, Shanghai University, ( https://ror.org/006teas31) 99 Shangda Road, Shanghai, 200444 Shanghai China
                Article
                89686
                10.1038/s41598-025-89686-7
                11814250
                39934258
                80d8c244-cee1-4622-80d8-3805d729d05a
                © The Author(s) 2025

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 December 2024
                : 6 February 2025
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2025

                Uncategorized
                car-t,cryopreserved pbmcs,piggybac,electroporation,process optimization,cancer,immunology
                Uncategorized
                car-t, cryopreserved pbmcs, piggybac, electroporation, process optimization, cancer, immunology

                Comments

                Comment on this article

                Related Documents Log