13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Morphological traits: predictable responses to macrohabitats across a 300 km scale

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Species traits may provide a short-cut to predicting generalities in species turnover in response to environmental change, particularly for poorly known taxa. We ask if morphological traits of assemblages respond predictably to macrohabitats across a large scale. Ant assemblages were collected at nine paired pasture and remnant sites from within three areas along a 300 km distance. We measured ten functional morphological traits for replicate individuals of each species. We used a fourth corner model to test associations between microhabitat variables, macrohabitats (pastures and remnants) and traits. In addition, we tested the phylogenetic independence of traits, to determine if responses were likely to be due to filtering by morphology or phylogeny. Nine of ten traits were predicted by macrohabitat and the majority of these traits were independent of phylogeny. Surprisingly, microhabitat variables were not associated with morphological traits. Traits which were associated with macrohabitats were involved in locomotion, feeding behaviour and sensory ability. Ants in remnants had more maxillary palp segments, longer scapes and wider eyes, while having shorter femurs, smaller apical mandibular teeth and shorter Weber’s lengths. A clear relationship between traits and macrohabitats across a large scale suggests that species are filtered by coarse environmental differences. In contrast to the findings of previous studies, fine-scale filtering of morphological traits was not apparent. If such generalities in morphological trait responses to habitat hold across even larger scales, traits may prove critical in predicting the response of species assemblages to global change.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Rebuilding community ecology from functional traits.

          There is considerable debate about whether community ecology will ever produce general principles. We suggest here that this can be achieved but that community ecology has lost its way by focusing on pairwise species interactions independent of the environment. We assert that community ecology should return to an emphasis on four themes that are tied together by a two-step process: how the fundamental niche is governed by functional traits within the context of abiotic environmental gradients; and how the interaction between traits and fundamental niches maps onto the realized niche in the context of a biotic interaction milieu. We suggest this approach can create a more quantitative and predictive science that can more readily address issues of global change.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Economic Value of Ecological Services Provided by Insects

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phylogeny of the ants: diversification in the age of angiosperms.

              C. Moreau (2006)
              We present a large-scale molecular phylogeny of the ants (Hymenoptera: Formicidae), based on 4.5 kilobases of sequence data from six gene regions extracted from 139 of the 288 described extant genera, representing 19 of the 20 subfamilies. All but two subfamilies are recovered as monophyletic. Divergence time estimates calibrated by minimum age constraints from 43 fossils indicate that most of the subfamilies representing extant ants arose much earlier than previously proposed but only began to diversify during the Late Cretaceous to Early Eocene. This period also witnessed the rise of angiosperms and most herbivorous insects.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                04 March 2014
                2014
                : 2
                : e271
                Affiliations
                [1 ]Centre for Behavioural and Physiological Ecology, Zoology, University of New England , Armidale, NSW, Australia
                [2 ]Department of Zoology, La Trobe University , Melbourne, VIC, Australia
                Article
                271
                10.7717/peerj.271
                3961160
                24688850
                80de1c8d-9ec1-4f0b-b97c-f0c88b375325
                © 2014 Yates et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 27 October 2013
                : 22 January 2014
                Funding
                Funded by: Australian Research Council (ARC) Discovery grant
                Award ID: DP0769961
                Funded by: ARC Discovery Grant
                Award ID: DP0985886
                The University of New England provided MLY with a student scholarship. NRA received an Australian Research Council (ARC) Discovery grant (DP0769961) and NRA and HG received an ARC Discovery Grant (DP0985886). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Biodiversity
                Ecology
                Entomology
                Zoology
                Statistics

                land management,biogeography,functional traits,community structure,body size

                Comments

                Comment on this article